Included H3PW12O40 in cyclodextrin as catalyst for oleic acid esterification

Main Article Content

Feriel Toumi
https://orcid.org/0009-0006-0891-2698
Yasmina Idrissou
https://orcid.org/0009-0005-2436-6722
Tassadit Mazari
https://orcid.org/0000-0003-0873-2030
Nicolas Kania
Anne Ponchel
https://orcid.org/0000-0003-0476-7973
Abdenour Boumechhour
https://orcid.org/0000-0002-8531-3027
Nouara lamrani
https://orcid.org/0000-0002-6320-6538
Cherifa Rabia

Abstract

This study focuses on the use of cyclodextrins (β-CD and HP-β-CD) as host materials to immobilize 20 wt% tungstophosphoric acid, H₃PW₁₂O₄₀ (HPW), and their application as catalysts for the esterification of oleic acid, a fatty acid commonly found in many vegetable oils and frequently used as a biodiesel feedstock, into methyl oleate using methanol, the most commonly preferred alcohol for this reaction. The catalytic performances of these hybrid materials were compared with those of incorporated HPW into polyacrylamide hydrogel (20 wt% HPW/PAAm) and supported HPW on silica (20 wt% HPW/SiO₂), a conventional inorganic support. All materials were characterized by various techniques. For all supports, the Keggin structure of H₃PW₁₂O₄₀ was retained after immobilization, as confirmed by FT-IR and Raman spectroscopies. XRD and SEM analyses suggested the formation of inclusion complexes in the HPW/β-CD and HPW/HP-β-CD systems, as well as the successful incorporation of HPW into the PAAm matrix. In the esterification reaction carried out at 60 °C for 3h, bulk HPW, HPW/PAAm and HPW/β-CD exhibited high catalytic activity, achieving methyl oleate yields of 97, 94 and 69%, respectively, significantly higher than that obtained with the silica-supported catalyst (41%).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
F. Toumi, “Included H3PW12O40 in cyclodextrin as catalyst for oleic acid esterification”, J. Serb. Chem. Soc., Dec. 2025.
Section
Materials
Author Biography

Yasmina Idrissou, Laboratory of Natural Gas Chemistry (LCGN), Faculty of Chemistry (USTHB), BP 32, 16111, Algiers

Ecole Normale Supérieure Kouba (ENS), Alger, Algérie

References

S. Liu, Z. Li, K. Han, Y. Wang, S. Niu, J. Liu, J. Zhu, Y. Zheng, Chem. Eng. Proc. Proc. Intens. 200 (2024) 109777 (https://doi.org/10.1016/j.cep.2024.109777 )

G. B. Shimada, A. Cestari, Renew. Energy 156 (2020) 389–394 (https://doi.org/10.1016/j.renene.2020.04.095 )

B. O. Yusuf, S. A. Oladepo, S. A. Ganiyu, ACS Omega 8 (2023) 23720 (https://doi.org/10.1021/acsomega.3c01892 )

P. Prasertpong, J. Lipp, A. Dong, N. Tippayawong, J. R. Regalbuto, Catalysts 13 (2022) 38 (https://doi.org/10.3390/catal13010038 )

K. A. V. Miyuranga, U. S. P. R. Arachchige, T. M. M. Marso, G. Samarakoon, Catalysts 13 (2023) 546 (https://doi.org/10.3390/catal13030546 )

F. Esmi, S. Masoumi, A. K. Dalai, Catalysts 12 (2022) 658 (https://doi.org/10.3390/catal12060658 )

Z. Wang, L. Liu, Cat. Today 376 (2021) 55–64 (https://doi.org/10.1016/j.cattod.2020.08.007 )

Y. Patiño, L. Faba, E. Díaz, S. Ordóñez, J. Env. Manag. 365 (2024) 121643 (https://doi.org/10.1016/j.jenvman.2024.121643 )

M. Alotaibi, Md. A. Bakht, A. I. Alharthi, M. H. Geesi, I. Uddin, H. A. Albalwi, Y. Riadi, Polycyc. Arom. Comp. 42 (2022) 3089–3102 (https://doi.org/10.1080/10406638.2020.1852588 )

J. Alcañiz-Monge, B. E. Bakkali, G. Trautwein, S. Reinoso, Appl. Cat. B Env. 224 (2018) 194–203 (https://doi.org/10.1016/j.apcatb.2017.10.066 )

C. Leyvison Rafael V. da, C. E. R. Reis, R. de Lima, D. V. Cortez, H. F. de Castro, RSC Adv. 9 (2019) 23450–23458 (https://doi.org/10.1039/C9RA04300D )

R. P. D. Almeida, R. C. Gomes Aciole, A. Infantes-Molina, E. Rodríguez-Castellón, J. G. Andrade Pacheco, I. D. C. Lopes Barros, J. Clean. Prod. 282 (2021) 124477 (https://doi.org/10.1016/j.jclepro.2020.124477 )

R. Frenzel, D. Morales, G. Romanelli, G. Sathicq, M. Blanco, L. Pizzio, J. Mol. Catal. A Chem. 420 (2016) 124 (https://doi.org/10.1016/j.molcata.2016.01.026 )

N. Kumar, R. Gusain, S. Pandey, S. S. Ray, Adv. Mat. Interf. 10 (2023) 2201375 (https://doi.org/10.1002/admi.202201375 )

S. Señorans, E. Rangel-Rangel, E. M. Maya, L. Díaz, React. Funct. Polym. 202 (2024) 105964 (https://doi.org/10.1016/j.reactfunctpolym.2024.105964 )

T. N. Dharmapriya, S.-Y. Wu, K.-L. Chang, P.-J. Huang, J. Taiwan Inst. Chem. Eng. 149 (2023) 104997 (https://doi.org/10.1016/j.jtice.2023.104997 )

S. S. Balula, C. N. Dias, F. Mirante, Available on SSRN (2025) (https://doi.org/10.2139/ssrn.5387449 )

Z. He, H. Wang, H. Yu, L. Zhang, C. Song, K. Huang, React. Funct. Polymers 169 (2021) 105063 (https://doi.org/10.1016/j.reactfunctpolym.2021.105063 )

E. X. Aguilera Palacios, V. Palermo, A. G. Sathicq, L. R. Pizzio, G. P. Romanelli, Catalysts 12 (2022) 1155 (https://doi.org/10.3390/catal12101155 )

J. Zhu, T. Gotoh, S. Nakai, N. Tsunoji, M. Sadakane, Mat. Adv. 2 (2021) 3556–3559 (https://doi.org/10.1039/D1MA00278C )

G. Utzeri, P. M. C. Matias, D. Murtinho, A. J. M. Valente, Front. Chem. 10 (2022) 859406 (https://doi.org/10.3389/fchem.2022.859406 )

M. Abbasi, J. Chinese Chem. Soc. 64 (2017) 896–917 (https://doi.org/10.1002/jccs.201600887 )

D. Boczar, K. Michalska, Pharmaceutics 14 (2022) 1389 (https://doi.org/10.3390/pharmaceutics14071389 )

B. Samannan, J. Selvam, J. Thavasikani, Asian J. Chem. 32 (2020) 297–302 (https://doi.org/10.14233/ajchem.2020.22321 )

S. Teka, A. Jebnouni, A. A. O. Alrashidi, O. A. Alshammari, N. S. Jaballah, M. S. O. Alhar, M. Majdoub, J. Mol. Struct. 1308 (2024) 138044 (https://doi.org/10.1016/j.molstruc.2024.138044 )

D. S. Dalal, D. R. Patil, Y. A. Tayade, Chem. Rec. 18 (2018) 1560–1582 (https://doi.org/10.1002/tcr.201800016 )

Y. Wu, R. Shi, Y.-L. Wu, J. M. Holcroft, Z. Liu, M. Frasconi, M. R. Wasielewski, H. Li, J. F. Stoddart, J. Am. Chem. Soc. 137 (2015) 4111–4118 (https://doi.org/10.1021/ja511713c )

S. Aniba, N. Leclerc, C. Falaise, C. Roch-Marchal, S. Akriche, E. Cadot, M. Haouas, Dalton Trans. 54 (2025) 12534 (https://doi.org/10.1039/D5DT01317H )

M. Segado-Centellas, C. Falaise, N. Leclerc, G. Mpacko Priso, M. Haouas, E. Cadot, C. Bo, Chem. Sci. 15 (2024) 15849 (https://doi.org/10.1039/D4SC01949K )

F. A. N. Fernandes, Catal. Res. 2 (2022) 034 (https://doi.org/10.21926/cr.2204034 )

Y. Idrissou, T. Mazari, C. Rabia, J. Iranian Chem. Soc. 19 (2022) 2553–2560 (https://doi.org/10.1007/s13738-021-02474-8 )

O. A. Mawlid, H. H. Abdelhady, M. G. Abd El-Moghny, A. Hamada, F. Abdelnaby, M. Kased, S. Al-Bajouri, R. A. Elbohy, M. S. El-Deab, J. Clean. Prod. 442 (2024) 140947 (https://doi.org/10.1016/j.jclepro.2024.140947 )

H. S. Booth (Ed.), Inorganic Syntheses, Volume I, McGraw-Hill Book Company, New York, USA, 1939

M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin, Germany, 1983 (https://link.springer.com/book/9783662120064 )

Y. Idrissou, T. Mazari, S. Benadji, M. Hamdi, C. Rabia, React. Kinet. Mech. Cat. 119 (2016) 291–304 (https://doi.org/10.1007/s11144-016-1042-5 )

C. Cannilla, G. Bonura, E. Rombi, F. Arena, F. Frusteri, Appl. Cat. A: General 382 (2010) 158–166 (https://doi.org/10.1016/j.apcata.2010.04.031 )

C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, R. Thouvenot, J. Mol. Struct. 114 (1984) 49–56 (https://doi.org/10.1016/S0022-2860(84)87202-6 )

H. Rachmawati, C. A. Edityaningrum, R. Mauludin, AAPS PharmSciTech 14 (2013) 1303–1312 (https://doi.org/10.1208/s12249-013-0023-5 )

A. Somer, J. R. Roik, M. A. Ribeiro, A. M. Urban, A. Schoeffel, V. M. Urban, P. V. Farago, L. V. D. Castro, F. Sato, C. Jacinto, E. Campesatto, M. S. A. Moreira, A. Novatski, Mat. Chem. Phys. 239 (2020) 122117 (https://doi.org/10.1016/j.matchemphys.2019.122117 )

M. T. Pope, A. Müller (Eds.) Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity Dordrecht (NL): Kluwer Academic Publishers; 1994.

P. Li, Z. Liu, Z. Xia, J. Yang, Optoelect. Adv. Mat. Rapid Comm. 17 (2023) 170–176 (https://oam-rc.inoe.ro/articles/phosphotungstic-acidsilicon-carbide-nanowire-heterostructure-photocatalyst-for-improving-photodegradation-of-rhodamine-b/ )

D. Han, Z. Han, L. Liu, Y. Wang, S. Xin, H. Zhang, Z. Yu, Int. J. Mol. Sci. 21 (2020) 766 (https://doi.org/10.3390/ijms21030766 )

P. Li, Q. Chen, B. Chen, Z. Liu, Micro Nani Lett. 15 (2020) 779 (https://doi.org/10.1049/mnl.2019.0734 )

X. Xing, Q. Wu, L. Zhang, Q. Shu, Catalysts 15 (2025) 412 (https://doi.org/10.3390/catal15050412 )

Z. Yu, X. Chen, Y. Zhang, H. Tu, P. Pan, S. Li, Y. Han, M. Piao, J. Hu, F. Shi, X. Yang, Chem. Eng. J. 430 (2022) 133059 (https://doi.org/10.1016/j.cej.2021.133059 )

Y. A. Tayade, D. S. Dalal, Catal. Lett. 147 (2017) 1411–1421 (https://doi.org/10.1007/s10562-017-2032-6 )

R. S. Thombal, A. R. Jadhav, V. H. Jadhav, RSC Adv. 5 (2015) 12981–12986 (https://doi.org/10.1039/C4RA16699J ).