Experimental measurements and modeling of solvent activity and surface tension of binary mixtures of polyvinylpyrrolidone in water and ethanol

Majid Taghizadeh, Saber Sheikhvand Amiri


In this paper, the density (ρ), viscosity (η) and surface tension (σ) of solutions of poly(vinyl pyrrolidone) (PVP) with molecular weights of 25000 (K25) and 40000 g mol-1 (K40) in water and ethanol were measured in the temperature range 20–65 °C and at various mass fractions of polymer (0.1, 0.2, 0.3 and 0.45). The solvent activity measurements were performed at 45 and 55 °C. Thereafter, two thermodynamic models for predicting the solvent activity and surface tension of binary polymer mixtures (PVP in water and ethanol) were proposed. The Flory–Huggins theory and Eyring model were employed to calculate the surface tension of the solution and the solvent activity, res­pect­ively. Additionally, the proposed activity model was dependent on the density and viscosity of the solution. Afterwards, the ability of these models at various temperatures and mass fractions were investigated by comparing the results with the experimental data. The results confirmed that, in the investigated temperature range, these models have good accuracy.


polyvinylpyrrolidone; solvent activity; surface tension; thermodynamic model


R. Sadeghi, Polymer 46 (2005) 11517

M. T. Zafarani-Moattar, Zh. Khoshsima, J. Chem. Thermodyn. 40 (2008) 1569

R. Sadeghi, M. T. Zafarani-Moattar, J. Chem. Thermodyn. 36 (2004) 665

M. Rahbari-Sisakht, M. Taghizadeh, A. Eliassi, J. Chem. Eng. Data 48 (2003) 1221

S. Trivedi, C. Bhanot, S. J. Pandey, Chem. Thermodyn. 42 (2010) 1367

M. Taghizadeh, A. Eliassi, M. Rahbari-Sisakht, J. Appl. Polym. Sci. 96 (2005) 1059

F. X. Feitosa, A. C. R. Caetano, T. B. Cidade, H. B. de Sant’Ana, J. Chem. Eng. Data 54 (2009) 2957

M. Herskowitz, M. J. Gottlieb, Chem. Eng. Data 30 (1985) 233

J. E. Mark, Polymer Data Handbook, 2nd ed., Oxford University Press, Oxford, 2009

M. Bortolotti, M. Brugnara, C. Della Volpe, D. Maniglio, S. Siboni, J. Colloid Interface Sci. 296 (2006) 292

Ch. Yang, Ch. Zhong, Chin. J. Chem. Eng. 12 (2004) 85

S. Enders, H. Kahl, J. Winkelmann, J. Chem. Eng. Data 52 (2007) 1072

D. T. Stanton, P. C. Jurs, J. Chem. Inf. Comput. Sci. 32 (1992) 109

G. W. Kauffman, P. C. Jurs, J. Chem. Inf. Comput. Sci. 41 (2001) 408

J. Livingston, R. Morgan, J. Am. Chem. Soc. 37 (1915) 1461

P. L. du Noüy, J. Gen. Physiol. 1 (1919) 521

R. Macy, J. Chem. Educ. 12 (1935) 573

K. Mysels, Colloids Surfaces, A 43 (1990) 241

C. R. Reid, T. K. Sherwood, The Properties of Gases and Liquids, McGraw­Hill, New York, 1966

E. Egemen, N. Nirmalakhandan, C. Trevizo, Environ. Sci. Technol. 34 (2000) 2596

T. Oishi, J. M. Prausnitz, Ind. Eng. Chem. Process Des. Dev. 17 (1978) 333

F. Firouzi, H. Modarress, G. A. Mansoori, Eur. Polym. J. 34 (1998) 1489

E. Keshmirizadeh, H. Modarress, A. Eliassi, G. A. Mansoori, Eur. Polym. J. 39 (2003) 1141

M. S. High, R. P. Danner, Fluid Phase Equilib. 53 (1989) 323

L. H. Adams, Chem. Rev. 19 (1936) 1

M. Maali, R. J. Sadeghi, Chem. Thermodyn. 84 (2015) 41

S. Glasstone, K. J. Laidler, H. Eyring, The Theory of Rate Process, McGraw-Hill, New York, 1941

P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, New York, 1953

W. Brown, J. Appl. Polym. Sci. 11 (1967) 2381.

DOI: https://doi.org/10.2298/JSC160505028T


  • There are currently no refbacks.

Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)