Fabrication of reduced graphene oxide decorated with CuS nanoparticles and its activity toward the adsorption of methylene blue

Fatima Tuz Johra, Woo-Gwang Jung


Reduced graphene oxide (RGO) can act as an adsorbent because of its high surface area. Adsorptive characteristics are studied quantitatively on the RGO composite combined with CuS. The removal efficiency of methylene blue is found to be about 85%, which is higher than that of bare CuS (~73%). Further, the kinetics of adsorption of methylene blue was also inspected to determine the rate of the process. The removal process is faster with the RGO-CuS system than with bare CuS. Both high and low temperatures are not favorable for this adsorption process. In highly ionic media of high or low pH, the adsorption is greater than in media of neutral pH. Thermodynamic parameters were calculated in this work, which suggest that this is physisorption and exothermic in nature.


reduced graphene oxide; copper sulfide; adsorption; kinetics; methylene blue

Full Text:

PDF (6,625 kB)


S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 442 (2006) 282.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Nature Materials 6 (2007) 652.

Z. He, Y. Zhu, Z. Xing, Z. Wang, J. Electronic Mater. 45(1) (2016) 285.

X.-H Guan, L. Yang, X. Guan, G.-S. Wang, RSC Adv. 5 (2015) 36185.

M. N. Habashi, S. K. Asl, Korean J. Mater. Res. 27 (2017) 248.

Q. Zhuo, Y. Ma, J. Gao, P. Zhang, Y. Xia, Y. Tian, X. Sun, J. Zhong, X. Sun, Inorg. Chem. 52 (2013) 3141.

Y. He, Y. Liu, T. Wu, J. Ma, X. Wang, Q. Gong, W. Kong, F. Xing, Y. Liu, J. Gao, J. Hazard. Mater. 260 (2013) 796.

H. R. Pouretedal, A. Norozi, M. H. Keshavarz, A. Semnani, J. Hazard. Mater. 162 (2009) 674.

M. Ghaedi, M. Pakniat, Z. Mahmoudi, S. Hajati, R. Sahraei, A. Daneshfar, Spectrochim. Acta Mol. Biomol. Spectrosc.123 (2014) 402.

Y. Zhang, J. Tian, H. Li, L. Wang, X. Qin, A. M. Asiri, A. O. Al-Youbi, X. Sun, Langmuir 28 (2012) 12893.

W. Sun, J. Zhong, B. Zhang, K. Jiao, Anal. Bioanal. Chem. 389 (2007) 2179.

J. Qian, K. Wang, Q. Guan, H. Li, H. Xu, Q. Liu, W. Lie, B. Qie, Appl. Surf. Sci. 288 (2014) 633.

C. Hu, Y. Liu, J. Rong, Q. Liu, Nano: Brief Reports and Reviews, 8 (2015) 1550123.

J. Shi, X. Zhou, Y. Liu, Q. Su, J. Zhang, G. Du, Mater. Lett. 126 (2014) 220.

Y. Wang, L. Zhang, H. Jiu, N. Li, Y. Sun, Appl. Sur. Sci. 303 (2014) 54.

K.-J. Huang, J.-Z. Jhang, Y. Liu, Y.-M. Liu, Int. J. Hydrogen Energy 40 (2015) 10158.

W. Choi, I. Lahiri, R. Seelaboyina, Y. S. Kang, Crit. Rev. Solid State Mater. Sci. 35 (2010) 52.

H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, Nat. Commun. 4 (2013) 1539(1-7).

F. T. Johra, W.-G. Jung, Appl. Surf. Sci. 362 (2016) 169.

S. Sun, D. Deng, C. Kong, X. Song, Z. Yang, Dalton Trans. 41 (2012) 3214.

G. D. Smith, R. J. H. Clark, J. Cultural Heritage 3 (2002) 101.

T. P. Mernagh, A. G. Trudu, Chem. Geol. 103 (1993) 113.

A. C. Ferrari, J. Robertson, Phys. Rev. B 61 (20) (2000) 14095.

F. Tuinstra, J. L. Koenig, J. Chem. Phys. 53 (1970) 1126.

S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, R. S. Ruoff, Nano Lett. 9 (2009) 1593.

B. I. Olu-Owolabi, P. N. Diagboya, W. C. Ebaddan, Chem. Eng. J. 195 (2012) 270.

Z. Liu, F. -S. Zhang, J. Hazard. Mater. 167 (2009) 933.

P. W. Atkins, Physical Chemistry, fourth ed., Oxford University Press, London, 1990, p. 884.

DOI: https://doi.org/10.2298/JSC170810117T

Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)