Anti-inflammatory activity of synthetic and natural glucoraphanin

Main Article Content

Quan V. Vo
Pham Cam Nam
Thuc Ngoc Dinh
Adam Mechler
Thi Thi Van Tran


Glucoraphanin is one of the best known glucosinolates because of its health benefits. The compound is known to eliminate carcinogens in tissue and hence is frequently studied for its cancer preventative properties. In this work, the total synthesis of α- and β-glucoraphanin epimers was attempted. β-Glu­coraphanin potassium salt was successfully synthesized in high overall yield, whereas the α-epimer was found to be unstable as it decomposed in the final step of the total synthesis. The anti-inflammatory activity of the synthetic glu­co­raphanin was det­ermined by inhibition of the release of tumor necrosis factor alpha (TNF-α) sec­retion in lipopolysaccharide-stimulated THP-1 cells. It was shown that in the pre­sence of either the synthetic or natural glucoraphanin, TNF-α secretion was sig­nificantly reduced (≈52 % inhibition) at a concen­tration of 15 μM.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
Q. V. Vo, P. C. Nam, T. N. Dinh, A. Mechler, and T. T. V. Tran, “Anti-inflammatory activity of synthetic and natural glucoraphanin”, J. Serb. Chem. Soc., vol. 84, no. 5, pp. 445–453, Jun. 2019.
Organic Chemistry


L. G. West, K. A. Meyer, B. A. Balch, F. J. Rossi, M. R. Schultz, G. W. Haas, J. Agric. Food Chem. 52 (2004) 916 (

E. E. Powell, G. A. Hill, B. H. Juurlink, D. J. Carrier, J. Chem. Technol. Biotechnol. 80 (2005) 985 (

J. W. Fahey, A. T. Zalcmann, P. Talalay, Phytochemistry 56 (2001) 5 (

Y. Zhang, P. Talalay, C. G. Cho, G. H. Posner, Proc. Natl. Acad. Sci. U. S. A. 89 (1992) 2399 (

R. Iori, R. Bernardi, D. Gueyrard, P. Rollin, S. Palmieri, Bioorg. Med. Chem. Lett. 9 (1999) 1047 (

G. Kiddle, R. N. Bennett, N. P. Botting, N. E. Davidson, A. A. B. Robertson, R. M. Wallsgrove, Phytochem. Anal. 12 (2001) 226 (

F. M. V. Pereira, E. Rosa, J. W. Fahey, K. K. Stephenson, R. Carvalho, A. Aires, J. Agric. Food Chem. 50 (2002) 6239 (

R. H. Lai, A. S. Keck, M. Wallig, L. West, E. Jeffery, Food Chem. Toxicol. 46 (2008) 195 (

N. Zhu, M. Soendergaard, E. H. Jeffery, R. H. Lai, J. Agric. Food Chem. 58 (2010) 1558 (

Q. V. Vo, C. Trenerry, S. Rochfort, A. B. Hughes, Tetrahedron 69 (2013) 8731 (

Q. V. Vo, C. Trenerry, S. Rochfort, J. Wadeson, C. Leyton, A. B. Hughes, Bioorg. Med. Chem. 22 (2014) 856 (

N. Juge, R. F. Mithen, M. Traka, Cell. Mol. Life Sci. 64 (2007) 1105 (

H. Ohshima, H. Bartsch, Mutat. Res., Fundam. Mol. Mech. Mutagen 305 (1994) 253 (

V. Dobričić, B. M. Francuski, V. Jaćević, M. V. Rodić, S. Vladimirov, O. Čudina, D. Francuski, J. Serb. Chem. Soc. 80 (2015) 1481 (

U. Singh, J. Tabibian, S. K. Venugopal, S. Devaraj, I. Jialal, Clin. Chem. 51 (2005) 2252 (

Q. V. Vo, S. Rochfort, P. C. Nam, T. L. Nguyen, T. T. Nguyen, A. Mechler, Carbohydr. Res. 455 (2018) 45 (

M. H. Benn, Can. J. Chem. 41 (1963) 2836 (

P. Rollin, A. Tatibouët, C. R. Chim. 14 (2011) 194 (

Q. V. Vo, C. Trenerry, S. Rochfort, J. Wadeson, C. Leyton, A. B. Hughes, Bioorg. Med. Chem. 21 (2013) 5945 (

S. Rochfort, D. Caridi, M. Stinton, V. C. Trenerry, R. Jones, J. Chromatogr. A 1120 (2006) 205 (

S. J. Rochfort, V. C. Trenerry, M. Imsic, J. Panozzo, R. Jones, Phytochemistry 69 (2008) 1671 (