3,4–dihydro–2H–1,3–benzoxazines and their oxo–derivatives chemistry and bioactivities

Nabaweya Abd Elsalam Sharaf Eldin

Abstract


3,4–Dihydro–2H–1,3–benzoxazines derivatives are a significant class of heterocycles with a particular awareness due to their remarkable biological activities in humans, plant as well as in animals and also, they are naturally occurrence. Because of alteration in the benzoxazines skeleton, beside their comparative chemical simplicity and accessibility, make these compounds to be suitable sources of other bioactive compounds. Resulting in the discovery of a wide set of these compounds that have a broad biological activity such as antifungal, antibacterial, anti-HIV, anticancer, anticonvulsant, anti-inflam­ma­tory and so on. Subsequently, this review herein gives a brief overview of derivatives of 3,4–dihydro–2H–1,3–benzoxazines monomers and their oxo–derivatives chemistry and bioactivities.


Keywords


benzo-1,3-oxazines; synthesis; reactions; biological activities.

Full Text:

PDF (2,246 kB)

References


L. Lázár, F. Fülöp, Comprehensive Heterocyclic Chemistry III, 2008 (http://dx.doi.org/10.1016/B978-008044992-0.00705-7).

J. B. Chylińska, T. Urbański, J. Heterocycl. Chem. 1 (1964) 93–95 (http://dx.doi.org/10.1002/jhet.5570010208).

W. J. Burke, J. Am. Chem. Soc. 71 (1949) 609–612 (http://dx.doi.org/10.1021/ja01170a063).

R. F. Ahn, J.S.; Hahm, D.G.; Heaney, H.; Wilkins, Bull. Korean Chem. Soc. 15 (1994) 329–330. (http://dx.doi.org/10.1002/chin.199508203).

Y. Wu, G. Qiao, H. Liu, L. Zhang, Z. Sun, Y. Xiao, H. Guo, RSC Adv. 5 (2015) 84290-84294 (http://dx.doi.org/10.1039/c5ra12401h).

H. Sugimoto, S. Nakamura, T. Ohwada, Adv. Synth. Catal. 349 (2007) 669–679 (http://dx.doi.org/10.1002/adsc.200600508).

W. J. Burke, R. P. Smith, C. Weatherbee, J. Am. Chem. Soc. 74 (1952) 602–605 (http://dx.doi.org/10.1021/ja01123a007).

S. Chirachanchai, A. Laobuthee, S. Phongtamrug, J. Heterocycl. Chem. 46 (2009) 714–721 (http://dx.doi.org/10.1002/jhet.130).

X. Wang, F. Chen, Y. Gu, J. Polym. Sci. Part A Polym. Chem. 49 (2011) 1443–1452 (http://dx.doi.org/10.1002/pola.24566).

Z. Brunovska, J. P. Liu, H. Ishida, Macromol. Chem. Phys. 200 (1999) 1745–1752 (http://dx.doi.org/10.1002/(SICI)1521-3935(19990701)200:7<1745::AID-MACP1745>3.0.CO;2-D).

J. Liu, X. Lu, Z. Xin, C. Zhou, Langmuir 29 (2013) 411–416 (http://dx.doi.org/10.1021/la303730m).

W. J. Burke, M. J. Kolbezen, C. Wayne Stephens, J. Am. Chem. Soc. 74 (1952) 3601–3605 (http://dx.doi.org/10.1021/ja01134a039).

W. J. Burke, C. R. Hammer, C. Weatherbee, J. Org. Chem. 26 (1961) 4403–4407 (http://dx.doi.org/10.1021/jo01069a053).

Y. Cheng, J. Yang, Y. Jin, D. Deng, F. Xiao, Macromolecules 45 (2012) 4085–4091 (http://dx.doi.org/10.1021/ma3004218).

H. C. Chang, C. H. Lin, Y. W. Tian, Y. R. Feng, L. H. Chan, J. Polym. Sci. Part A Polym. Chem. 50 (2012) 2201–2210 (http://dx.doi.org/10.1002/pola.25993).

C. X. Zhang, Y. Y. Deng, Y. Y. Zhang, P. Yang, Y. Gu, Chinese Chem. Lett. 26 (2015) 348–352 (http://dx.doi.org/10.1016/j.cclet.2014.12.005).

A. Váradi, T. C. Palmer, P. R. Notis, G. N. Redel-Traub, D. Afonin, J. J. Subrath, G. W. Pasternak, C. Hu, I. Sharma, S. Majumdar, Org. Lett. 16 (2014) 1668–1671 (http://dx.doi.org/10.1021/ol500328t).

J. D. Edwards; J. Palermo, U.S. Pat. No. 8,293,281 (2012).

P. Zhang, E. A. Terefenko, A. Fensome, Z. Zhang, Y. Zhu, J. Cohen, R. Winneker, J. Wrobel, J. Yardley, Bioor. Med. Chem. Lett. 12 (2002) 787–790 (http://dx.doi.org/10.1016/S0960-894X(02)00025-2).

D. Sicker, M. Schulz, Stud. Nat. Prod. Chem.27 (2002) 185–232 (http://dx.doi.org/10.1016/S1572-5995(02)80037-0).

H. Varshney, A. Ahmad, A. Rauf, F. M. Husain, I. Ahmad, J. Saudi Chem. Soc. 21 (2017) S394–S402 (http://dx.doi.org/10.1016/j.jscs.2014.04.008).

W. J. Burke, C. Weatherbee, J. Am. Chem. Soc. 72 (1950) 4691–4694 (http://dx.doi.org/10.1021/ja01166a094).

H. P. Higginbottom, U.S. Pat. 4,501,864 (1985).

H. Ishida, J. P. Liu, Benzoxazine chemistry in solution and melt, in Handb. Benzoxazine Resins, 2011, pp. 85–102 (http://dx.doi.org/10.1016/B978-0-444-53790-4.00047-3).

Y. Liu, Z. Yue, J. Gao, Polymer 51 (2010) 3722–3729 (http://dx.doi.org/10.1016/j.polymer.2010.06.009).

Y. Deng, Q. Zhang, H. Zhang, C. Zhang, W. Wang, Y. Gu, Ind. Eng. Chem. Res. 53 (2014) 1933–1939 (http://dx.doi.org/10.1021/ie402978s).

Z. Tang, W. Chen, Z. Zhu, H. Liu, J. Heterocycl. Chem. 48 (2011) 255–260 (http://dx.doi.org/10.1002/jhet.533).

A. U. G. Gabbas, M. B. Ahmad, N. Zainuddin, N. A. Ibrahim, Asian J. Chem. 28 (2016) 1304–1306 (http://dx.doi.org/10.14233/ajchem.2016.19666).

Y. Omura, Y. Taruno, Y. Irisa, M. Morimoto, H. Saimoto, Y. Shigemasa, Tetrahedron Lett. 42 (2001) 7273–7275 (http://dx.doi.org/10.1016/S0040-4039(01)01491-5).

M. Akhter, S. Habibullah, S. M. Hasan, M. M. Alam, N. Akhter, M. Shaquiquzzaman, Med. Chem. Res. 20 (2011) 1147–1153 (http://dx.doi.org/10.1007/s00044-010-9451-x).

M. R. Vengatesan, S. Devaraju, D. Kannaiyan, J. K. Song, M. Alagar, Polym. Int. 62 (2013) 127–133 (http://dx.doi.org/10.1002/pi.4337).

H. Ishida, US Pat. 5,543,516 (1996).

O. A. Attanasi, M. S. Behalo, G. Favi, D. Lomonaco, S. E. Mazzetto, G. Mele, I. Pio, G. Vasapollo, Curr. Org. Chem. 16 (2012) 2613–2621 (http://dx.doi.org/10.2174/138527212804004616).

K. Chiou, E. Hollanger, T. Agag, H. Ishida, Macromol. Chem. Phys. 214 (2013) 1629–1635 (http://dx.doi.org/10.1002/macp.201300032).

R. Andreu, J. A. Reina, J. C. Ronda, J. Polym. Sci. Part A Polym. Chem. 46 (2008) 3353–3366 (http://dx.doi.org/10.1002/pola.22677).

P. Velez-Herrera, H. Ishida, J. Fluor. Chem. 130 (2009) 573–580 (http://dx.doi.org/10.1016/j.jfluchem.2009.04.002).

H. Qi, H. Ren, G. Pan, Y. Zhuang, F. Huang, L. Du, Polym. Adv. Technol. 20 (2009) 268–272 (http://dx.doi.org/10.1002/pat.1261).

Q. Ran, Q. Tian, C. Li, Y. Gu, Polym. Adv. Technol. 21 (2009) n/a-n/a (http://dx.doi.org/10.1002/pat.1412).

S. Q. R. Mahfud, T. Agag, H. Ishida, S. Shaikh, J. Colloid Interface Sci. 407 (2013) 339–347. (http://dx.doi.org/10.1016/j.jcis.2013.06.042).

T. Agag, T. Takeichi, Macromolecules 36 (2003) 6010–6017 (http://dx.doi.org/10.1021/ma021775q).

H. Ishida, S. Ohba, Polymer 46 (2005) 5588–5595 (http://dx.doi.org/10.1016/j.polymer.2005.04.080).

H. Ishida, T. Agag, Handbook of Benzoxazine Resins, 2011 (http://dx.doi.org/10.1016/C2010-0-66598-9).

M. Imran; B. Kiskan, Y. Yagci, Tetrahedron Lett. 54 (2013) 4966–4969 (https://doi.org/10.1016/j.tetlet.2013.07).

Y. Hayashi, Chem. Sci. 7 (2016) 866–880 (http://dx.doi.org/10.1039/C5SC02913A).

R. Ruijter, E., Scheffelaar, R., Orru, Angew. Chem. Int. Ed. 50 (2011) 6234–6246 (http://dx.doi.org/10.1002/anie.201006515).

J. Liu, G. Yuan, Tetrahedron Lett. 58 (2017) 1470–1473 (http://dx.doi.org/10.1016/j.tetlet.2017.02.081).

V. D. Dhakane; S.S. Gholap; U. P. Deshmukh; H. V. Chavan, B. P. Bandgar, Compt. Rend. Chim. 17 (2014) 431–436 (http://dx.doi.org/10.1016/j.crci.2013.06.002).

T. Zhang, J. Wang, T. Feng, H. Wang, N. Ramdani, M. Derradji, X. Xu, W. Liu, T. Tang, RSC Adv. 5 (2015) 33623–33631 (http://dx.doi.org/10.1039/c5ra02839f).

J. Wang, H. Wang, J. T. Liu, W. Bin Liu, X. De Shen, J. Therm. Anal. Calorim. 114 (2013) 1255–1264 (http://dx.doi.org/10.1007/s10973-013-3081-8).

R. Eligeti, G. R. Kundur, S. R. Atthunuri, N. R. Modugu, Green Chem. Lett. Rev. 5 (2012) (http://dx.doi.org/10.1080/17518253.2012.700736).

A. R. Katritzky, Y. J. Xu, R. Jain, J. Org. Chem. 67 (2002) 8234–8236 (http://dx.doi.org/10.1021/jo020176e).

F. W. Holly, A. C. Cope, J. Am. Chem. Soc. 66 (1944) 1875–1879 (http://dx.doi.org/10.1021/ja01239a022).

W. J. Burke, J. L. Bishop, E. L. M. Glennie, W. N. Bauer, J. Org. Chem. 30 (1965) 3423–3427 (http://dx.doi.org/10.1021/jo01021a037).

D. L. Fields, J. B. Miller, D. D. Reynolds, J. Org. Chem. 27 (1962) 2749–2753 (http://dx.doi.org/10.1021/jo01055a011).

J. Liu, Synthesis, characterization, reaction mechanism and kinetics of 3, 4-dihydro-2H-1, 3-benzoxazine and its polymer, 1995 (http://dx.doi.org/rave.ohiolink.edu/etdc/view?acc_num=case1062775094).

M. A. Espinosa, V. Cádiz, M. Galià, J. Appl. Polym. Sci. 90 (2003) 470–481 (http://dx.doi.org/10.1002/app.12678).

N. N. Ghosh, B. Kiskan, Y. Yagci, Prog. Polym. Sci. 32 (2007) 1344–1391 (http://dx.doi.org/10.1016/j.progpolymsci.2007.07.002).

C.-H. Chen, K.-W. Lee, C.-H. Lin, T.-Y. Juang, Polymers (Basel). 10 (2018) 411 (http://dx.doi.org/10.3390/polym10040411).

R. Andreu, J. C. Ronda, Synth. Commun. 38 (2008) 2316–2329 (http://dx.doi.org/10.1080/00397910802138629).

M. Imran, B. Kiskan, Y. Yagci, Tetrahedron Lett. 54 (2013) 4966–4969 (http://dx.doi.org/10.1016/j.tetlet.2013.07.041).

Y. Deng, Q. Zhang, H. Zhang, C. Zhang, W. Wang, Y. Gu, Ind. Eng. Chem. Res. 53 (2014) 1933–1939 (http://dx.doi.org/10.1021/ie402978s).

J. H. Billman, L. C. Dorman, J. Med. Chem. 6 (1963) 701–705 (http://dx.doi.org/10.1021/jm00342a016).

Z. Tang, Z. Zhu, Z. Xia, H. Liu, J. Chen, W. Xiao, X. Ou, Molecules 17 (2012) 8174–8185 (http://dx.doi.org/10.3390/molecules17078174).

A. U. G. Gabbas, M. B. Hj Ahmad, N. Zainuddin, N. A. Ibrahim, Polimery 62 (2017) 86–92 (http://dx.doi.org/10.14314/polimery.2017.086).

R. P. Subrayan, F. N. Jones, Chem. Mater. 10 (1998) 3506–3512 (http://dx.doi.org/10.1021/CM980284A).

M. Deb, P. Borpatra, P. Saikia, P. Baruah, Synlett 28 (2016) 461–466 (http://dx.doi.org/10.1055/s-0036-1589717).

H. Ishida, D. J. Allen, J. Polym. Sci. Part B Polym. Phys. 34 (1996) 1019–1030 (http://dx.doi.org/10.1002/(SICI)1099-0488(19960430)34:6<1019::AID-POLB1>3.0.CO;2-T).

H. Y. Low, H. Ishida, Polym. Degrad. Stab. 91 (2006) 805–815 (http://dx.doi.org/10.1016/j.polymdegradstab.2005.05.030).

C. Dizman M. A. Tasdelen, Polym. Int. 62 (2013) 991–1007 (http://dx.doi.org/https://doi.org/10.1002/pi.4525).

B. Van der Bruggen, J. Appl. Polym. Sci. 114 (2009) 630–642 (http://dx.doi.org/10.1002/app.30578).

T. Agag, L. Jin, H. Ishida, Polymer . 50 (2009) 5940–5944 (http://dx.doi.org/10.1016/j.polymer.2009.06.038).

M. Liu, Z.Hao, Lv, J. Huang, C. Liao, C. Run, Polymer . 57 (2015) 29–38 (http://dx.doi.org/10.1016/j.polymer.2014.12.005).

C. Dizman, C. Altinkok, M. A. Tasdelen, Des. Monom. Polym. 20 (2017) 293–299 (http://dx.doi.org/10.1080/15685551.2016.1257379).

M. J. H. Worthington, R. L. Kucera, J. M. Chalker, Green Chem. 19 (2017) 2748–2761 (http://dx.doi.org/10.1039/C7GC00014F).

M. A. Rahman, H. N. Lokupitiya, M. S. Ganewatta, L. Yuan, M. Stefik, C. Tang, Macromolecules 50 (2017) 2069–2077 (http://dx.doi.org/10.1021/acs.macromol.7b00001).

L. Dumas, L. Bonnaud, M. Olivier, M. Poorteman, P. Dubois, Eur. Polym. J. 81 (2016) 337–346 (http://dx.doi.org/10.1016/j.eurpolymj.2016.06.018).

G. A. Phalak, D. M. Patil, S. T. Mhaske, Eur. Polym. J. 88 (2017) 93–108 (http://dx.doi.org/10.1016/j.eurpolymj.2016.12.030).

E. Calò, A. Maffezzoli, G. Mele, F. Martina, S. E. Mazzetto, A. Tarzia, C. Stifani, Green Chem. 9 (2007) 754 (http://dx.doi.org/10.1039/b617180j).

B. Lochab, I. K. Varma, J. Bijwe, J. Therm. Anal. Calorim. 107 (2012) 661–668 (http://dx.doi.org/10.1007/s10973-011-1854-5).

Y. Sun, J. Cheng, Bioresour. Technol. 83 (2002) 1–11 (http://dx.doi.org/10.1016/S0960-8524(01)00212-7).

V. Menon, M. Rao, Prog. Energy Combust. Sci. 38 (2012) 522–550 (http://dx.doi.org/10.1016/j.pecs.2012.02.002).

M. Sharma, S. Manohar, D. S. Rawat, J. Heterocycl. Chem. 49 (2012) 589–595 (http://dx.doi.org/10.1002/jhet.825).

A. Kumar, M. K. Gupta, M. Kumar, RSC Adv. 2 (2012) 7371–7376 (http://dx.doi.org/10.1039/c2ra20848b).

F. Nemati, A. Beyzai, J. Chem. (2013) Article ID 365281, 4 pages (http://dx.doi.org/10.1155/2013/365281).

A. Chaskar, V. Vyavhare, V. Padalkar, K. Phatangare, H. Deokar, J. Serbian Chem. Soc. 76 (2011) 21–26 (http://dx.doi.org/10.2298/JSC100410016C).

F. Dong, Y. Li-Fang, Y. Jin-Ming, Res. Chem. Intermed. 39 (2013) 2505–2512 (http://dx.doi.org/10.1007/s11164-012-0776-6).

M. Lei, L. Ma, L. Hu, Synth. Commun. 41 (2011) 3424–3432 (http://dx.doi.org/10.1080/00397911.2010.518278).

A. Hajra, D. Kundu, A. Majee, J. Heterocycl. Chem. 46 (2009) 1019–1022 (http://dx.doi.org/10.1002/jhet.180).

S. Kantevari; S.V. Vuppalapati; R. Bantu; L. Nagarapu, J. Heterocycl. Chem. 47 (2010) 313–317 (http://dx.doi.org/10.1002/jhet.312).

G. B. Dharma Rao, M. P. Kaushik, A. K. Halve, Tetrahedron Lett. 53 (2012) 2741–2744 (http://dx.doi.org/10.1016/j.tetlet.2012.03.085).

G. Sabitha, K. Arundhathi, K. Sudhakar, B. S. Sastry, J. S. Yadav, J. Heterocycl. Chem. 47 (2010) 272–275 (http://dx.doi.org/10.1002/jhet.328).

A. Olyaei, M. Sadeghpour, M. Zarnegar, Chem. Heterocycl. Compd. 49 (2013) 1374–1377 (http://dx.doi.org/10.1007/s10593-013-1387-x).

I. Szatmári, A. Hetényi, L. Lázár, F. Fülöp, J. Heterocycl. Chem. 41 (2004) 367–373 (http://dx.doi.org/10.1002/jhet.5570410310).

C. Cimarelli, G. Palmieri, E. Volpini, Can. J. Chem. 82 (2004) 1314–1321 (http://dx.doi.org/10.1139/v04-100).

S. Guo, X. Liu, B. Shen, L. Lin, X. Feng, Org. Lett. 18 (2016) 5070–5073 (http://dx.doi.org/10.1021/acs.orglett.6b02522).

I. V. Ozhogin, I. V. Dorogan, B. S. Lukyanov, E. L. Mukhanov, V. V. Tkachev, A. V. Chernyshev, M. B. Lukyanova, S. M. Aldoshin, V. I. Minkin, Tetrahedron Lett. 57 (2016) 2382–2385 (http://dx.doi.org/10.1016/j.tetlet.2016.04.054).

N. Latif, N. Mishriky, F. Assad, Aust. J. Chem. 35 (1982) 1037–1043 (http://dx.doi.org/10.1071/CH9821037).

L. D. S. Yadav, B. S. Yadav, V. K. Rai, Tetrahedron Lett. 45 (2004) 5351–5353 (http://dx.doi.org/10.1016/j.tetlet.2004.05.084).

A. Mustafa, A. Eldin, A. A. Hassan, J. Am. Chem. Soc. 79 (1957) 3846–3849 (http://dx.doi.org/10.1021/ja01571a059).

L. Åkerbladh, S. Y. Chow, L. R. Odell, M. Larhed, ChemistryOpen 6 (2017) 620–628 (http://dx.doi.org/10.1002/open.201700130).

K. Pihlaja, J. Sinkkonen, F. Fülöp, Magn. Reson. Chem. 41 (2003) 435–440 (http://dx.doi.org/10.1002/mrc.1194).

P. P. Onys’ko, K. A. Zamulko, O. I. Kyselyova, Y. A. Syzonenko, Heterocycl. Commun. 23 (2017) 421–428 (http://dx.doi.org/10.1515/hc-2017-0102).

M. V. Vovk, A. V. Bol’But, A. N. Chernega, J. Fluor. Chem. 116 (2002) 97–101 (http://dx.doi.org/10.1016/S0022-1139(01)00561-9).

X. Chen, W. Hao, Y. Liu, Org. Biomol. Chem. 15 (2017) 3423–3426 (http://dx.doi.org/10.1039/C7OB00625J).

I. Chen Resck, M. L. dos Santos, L. A. Soares Romeiro, Heterocycles 65 (2005) 311–318 (http://dx.doi.org/10.3987/COM-04-10261).

R. A. Izydore, J. T. Jones, B. Mogesa, I. N. Swain, R. G. Davis-Ward, D. L. Daniels, F. F. Kpakima, S. T. Spaulding-Phifer, J. Org. Chem. 79 (2014) 2874–2882 (http://dx.doi.org/10.1021/jo402708j).

P. Boontheung, P. Perlmutter, Tetrahedron Lett. 39 (1998) 2629–2630 (http://dx.doi.org/10.1016/S0040-4039(98)00223-8).

J. Petridou–Fischer, E. P. Papadopoulos, J. Heterocycl. Chem. 20 (1983) 1159–1167 (http://dx.doi.org/10.1002/jhet.5570200506).

P. Froimowicz, K. Zhang, H. Ishida, Chem. -Eur. J. 22 (2016) 2691–2707 (http://dx.doi.org/10.1002/chem.201503477).

G. R. Goward, I. Schnell, S. P. Brown, H. W. Spiess, H.-D. Kim, H. Ishida, Magn. Reson. Chem. 39 (2001) S5–S17 (http://dx.doi.org/10.1002/mrc.931).

H. D. Kim, H. Ishida, A study on hydrogen bonding in controlled-structure benzoxazine model oligomers, in Macromol. Symp. 2003 (http://dx.doi.org/10.1002/masy.200390113).

G. R. Goward, D. Sebastiani, I. Schnell, H. W. Spiess, H. D. Kim, H. Ishida, J. Am. Chem. Soc. 125 (2003) 5792–5800 (http://dx.doi.org/10.1021/ja029059r).

W. Wattanathana, C. Veranitisagul, N. Koonsaeng, A. Laobuthee, 3,4-Dihydro-1,3-2H-Benzoxazines: Uses Other Than Making Polybenzoxazines, in Adv. Emerg. Polybenzoxazine Sci. Technol., 2017, pp. 75–88 (http://dx.doi.org/10.1016/B978-0-12-804170-3.00006-8).

N. K. Sini, T. Endo, Macromolecules 49 (2016) 8466–8478 (http://dx.doi.org/10.1021/acs.macromol.6b01965).

Y.-C. Su, D.-R. Yei, F.-C. Chang, J. Appl. Polym. Sci. 95 (2005) 730–737 (http://dx.doi.org/10.1002/app.21244).

K. S. Santhosh Kumar, C. P. Reghunadhan Nair, K. N. Ninan, Thermochim. Acta 441 (2006) 150–155 (http://dx.doi.org/10.1016/j.tca.2005.12.007).

T. Urbaniak, M. Soto, M. Liebeke, K. Koschek, J. Org. Chem. 82 (2017) 4050–4055 (http://dx.doi.org/10.1021/acs.joc.6b02727).

R. Andreu, J. A. Reina, J. C. Ronda, J. Polym. Sci. Part A Polym. Chem. 46 (2008) 6091–6101 (http://dx.doi.org/10.1002/pola.22921).

P. Chutayothin, H. Ishida, Macromolecules 43 (2010) 4562–4572 (http://dx.doi.org/10.1021/ma901743h).

V. Voiciuk, K. Redeckas, V. Martynaitis, R. Steponavičiute, A. Šačkus, M. Vengris, J. Photochem. Photobiol. A: Chem. 278 (2014) 60–68 (http://dx.doi.org/10.1016/j.jphotochem.2013.12.022).

Y. Prostota, P. J. Coelho, J. Pina, J. Seixas De Melo, J. Photochem. Photobiol. A: Chem. 216 (2010) 59–65 (http://dx.doi.org/10.1016/j.jphotochem.2010.09.006).

S. Ohashi, F. Cassidy, S. Huang, K. Chiou, H. Ishida, Polym. Chem. 7 (2016) 7177–7184 (http://dx.doi.org/10.1039/C6PY01686C).

I. Szatmári, T. A. Martinek, L. Lázar, A. Koch, E. Kleinpeter, K. Neuvonen, F. Fülöp, J. Org. Chem. 69 (2004) 3645–3653 (http://dx.doi.org/10.1021/jo0355810).

K. Wachi, A. Terada, Chem. Pharm. Bull. (Tokyo). 28 (1980) 465–472 (http://dx.doi.org/10.1248/cpb.28.465).

Y. I., Ryabukhin, L. N. Faleeva, V. G. Korobkova, Chem. Heterocycl. Compd. 19 (1983) 332–336 (http://dx.doi.org/10.1007/BF00513273).

E. V. Gromachevskaya, T. P. Kosulina, A. L. Chekhun, V. G. Kul’nevich, Chem. Heterocycl. Compd.29 (1993) 465–468 (http://dx.doi.org/10.1007/BF00529889).

I. V. Ozhogin, V. V. Tkachev, B. S. Lukyanov, G. V. Shilov, E. L. Mukhanov, G. T. Vasilyuk, S. M. Aldoshin, V. I. Minkin, Dokl. Chem. 477 (2017) 244–247 (http://dx.doi.org/10.1134/S0012500817110040).

B. S. Luk’yanov, Y. I. Ryabukhin, G. N. Dorofeenko, L. E. Nivorozhkin, V. I. Minkin, Chem. Heterocycl. Compd. 14 (1978) 122–127 (http://dx.doi.org/10.1007/BF00945321).

P. Kowalski; J. Jaśkowska; A. Bojarski and B. Duszyńska, J. Heterocycl. Chem. 45 (2008) 209–214 (http://dx.doi.org/10.1002/jhet.5570450125).

G. David, B. William, R. E Bay, U.S. Pat. No. 6,399,798 (2002).

S. Yamamoto, S. Hashiguchi, S. Miki, Y. Igata, T. Watanabe, M. Shiraishi, Chem. Pharm. Bull. (Tokyo). 44 (1996) 734–745 (http://dx.doi.org/10.1248/cpb.44.734).

C. A. Coburn, P. T. Meinke, W. Chang, C. M. Fandozzi, D. J. Graham, B. Hu, Q. Huang, S. Kargman, J. Kozlowski, R. Liu, J. A. McCauley, A. A. Nomeir, R. M. Soll, J. P. Vacca, D. Wang, et al., ChemMedChem 8 (2013) 1930–1940 (http://dx.doi.org/10.1002/cmdc.201300343).

I. K. Mangion, C. Chen, H. Li, P. Maligres, Y. Chen, M. Christensen, R. Cohen, I. Jeon, A. Klapars, S. Krska, H. Nguyen, R. A. Reamer, B. D. Sherry, I. Zavialov, Org. Lett. 16 (2014) 2310–2313 (http://dx.doi.org/10.1021/ol500971c).

S. Zeuzem, R. Ghalib, K. R. Reddy, P. J. Pockros, Z. B. Ari, Y. Zhao, ... M. N. Robertson, Ann. Intern. Med. 163 (2015) 1–13. (http://www.ncbi.nlm.nih.gov/pubmed/25909356?dopt=AbstractPlus).

X. Forms, S. C. Gordon, E. Zuckerman, E. Lawitz, J. L. Calleja, H. Hofer, C. Gilbert, J. Palcza, A. Y. M. Howe, M. J. DiNubile, M. N. Robertson, J. Wahl, E. Barr, M. Buti, J. Hepatol. 63 (2015) 564–572 (http://dx.doi.org/10.1016/j.jhep.2015.04.009).

A. Gallegos, R. Carbó-Dorca, R. Ponec, K. Waisser, Int. J. Pharm. 269 (2004) 51–60 (http://dx.doi.org/10.1016/j.ijpharm.2003.08.013).

P. Nemeček, J. Mocák, J. Lehotay, K. Waisser, Chem. Pap. 67 (2013) (http://dx.doi.org/10.2478/s11696-012-0278-4).

E. Petrlíková, K. Waisser, H. Divišová, P. Husáková, P. Vrabcová, J. Kuneš, K. Kolář, J. Stolaříková, Bioorg. Med. Chem. 18 (2010) 8178–8187 (http://dx.doi.org/10.1016/j.bmc.2010.10.017).

S. Gemma, C. Camodeca, M. Brindisi, S. Brogi, G. Kukreja, S. Kunjir, E. Gabellieri, L. Lucantoni, A. Habluetzel, D. Taramelli, N. Basilico, R. Gualdani, F. Tadini-Buoninsegni, G. Bartolommei, M. R. Moncelli, et al., J. Med. Chem. 55 (2012) 10387–10404 (http://dx.doi.org/10.1021/jm300831b).

S. G. Mansouri, H. Zali-Boeini, K. Zomorodian, B. Khalvati, R. H. Pargali, A. Dehshahri, H. A. Rudbari, M. Sahihi, Z. Chavoshpour, Arab. J. Chem. (2017), in press (http://dx.doi.org/10.1016/j.arabjc.2017.10.009).

P. Skála, M. Macháček, M. Vejsová, L. Kubicová, J. Kuneš, K. Waisser, J. Heterocycl. Chem. 46 (2009) 873–880 (http://dx.doi.org/10.1002/jhet.156).

N. A. Shakil, A. Pandey, M. K. Singh, J. Kumar, S. K. Awasthi, Pankaj, C. Srivastava, M. K. Singh, R. P. Pandey, J. Environ. Sci. Health Part B 45 (2010) 108–115 (http://dx.doi.org/10.1080/03601230903471852).

A. Capasso, A. Biondi, F. Palagiano, F. Bonina, L. Montenegro, P. de Caprariis, E. Pistorio, L. Sorrentino, Eur. Neuropsychopharmacol. 7 (1997) 57–63 (http://dx.doi.org/10.1016/S0924-977X(96)00390-2).

A. Capasso, C. Gallo, Med. Chem. (Los. Angeles).5 (2009) 343–352 (http://dx.doi.org/10.2174/157340609788681548).

T. Belz, S. Ihmaid, J. Al-Rawi, S. Petrovski, Int. J. Med. Chem. 2013 (2013) 1–20 (http://dx.doi.org/10.1155/2013/436397).

B. P. Mathew, A. Kumar, S. Sharma, P. K. Shukla, M. Nath, Eur. J. Med. Chem. 45 (2010) 1502–1507 (http://dx.doi.org/10.1016/j.ejmech.2009.12.058).

R. K. Ujjinamatada, R. S. Appala, Y. S. Agasimundin, J. Heterocycl. Chem.43 (2006) 437–441 (http://dx.doi.org/10.1002/jhet.5570430226).

V. Garg, A. Kumar, A. Chaudhary, S. Agrawal, P. Tomar, K. K. Sreenivasan, Med. Chem. Res. 22 (2013) 5256–5266 (http://dx.doi.org/10.1007/s00044-013-0534-3).

L. Seal, D. Von Hoff, R. Lawrence, E. Izbicka, R. M. Jamison, Invest. New Drugs 15 (1997) 289–293 (http://dx.doi.org/10.1023/A:1005962224801).

S. Wang, Y. Li, Y. Liu, A. Lu, Q. You, Bioorg. Med. Chem. Lett. 18 (2008) 4095–4097 (http://dx.doi.org/10.1016/j.bmcl.2008.05.103).

R. Morrison, J. M. A. Al-Rawi, I. G. Jennings, P. E. Thompson, M. J. Angove, Eur. J. Med. Chem. 110 (2016) 326–339 (http://dx.doi.org/10.1016/j.ejmech.2016.01.042).

K. Kusumoto, Y. Awane, T. Kitayoshi, S. Fujiwara, S. Hashiguchi, Z. Terashita, M. Shiraishi, T. Watanabe, J. Cardiovasc. Pharmacol. 24 (1994) 929–36. (http://www.ncbi.nlm.nih.gov/pubmed/7898076).

H. Mizufune, H. Irie, S. Katsube, T. Okada, Y., Mizuno, M. Arita, Tetrahedron 57 (2001) 7501–7506 (http://dx.doi.org/10.1016/S0040-4020(01)00728-1).

V. Tiwari, J. Meshram, P. Ali, J. Sheikh, U. Tripathi, J. Enzyme Inhib. Med. Chem. 26 (2011) 569–578 (http://dx.doi.org/10.3109/14756366.2010.539566).

G.R. Madhavan; R. Chakrabarti; K.A. Reddy; B.M. Rajesh; V. Balraju; P.B. Rao; R. Rajagopalan, J. Iqbal, Bioorg. Med. Chem. 14 (2006) 584–591 (http://dx.doi.org/10.1016/j.bmc.2005.08.043).

T. M. Böhme, C. E. Augelli-Szafran, H. Hallak, T. Pugsley, K. Serpa, R. D. Schwarz, J. Med. Chem. 45 (2002) 3094–3102 (http://dx.doi.org/10.1021/jm011116o).

M. Da Prada, R. Kettler, H. H. Keller, W. E. Haefely, Neurochemical Effects in vitro and in vivo of the Antidepressant Ro 11-1163, a Specific and Short-Acting MAO-A Inhibitor, in Satell. Symp. Int. Brain Res. Organ. (IBRO), Mannheim, Karger Publishers, 1983, pp. 231–245 (http://dx.doi.org/10.1159/000407520).

P.-W. Hsieh, T.-L. Hwang, C.-C. Wu, F.-R. Chang, T.-W. Wang, Y.-C. Wu, Bioorg. Med. Chem. Lett. 15 (2005) 2786–2789 (http://dx.doi.org/10.1016/j.bmcl.2005.03.104).

A. Moretti, A. Caccia, C. Calderini, G. Menozzi, M. Amico, Biochem. Pharmacol. 30 (1981) 2728–2731 (http://dx.doi.org/10.1016/0006-2952(81)90549-9).

P. Jakobsen, B. Ritsmar Pedersen, E. Persson, Bioorg. Med. Chem. 8 (2000) 2095–2103 (http://dx.doi.org/10.1016/S0968-0896(00)00129-2).




DOI: https://doi.org/10.2298/SC180530001S

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)