Determination of pKa for caffeic acid in mixed solvent using net analyte signal method and ab initio theory

Abbas Dadras, Ali Benvidi, Mansour Namazian, Saleheh Abbasi, Marzieh Dehghan Tezerjani, Moharram Roozgari, Reza Tabaraki

Abstract


Due to biological effects of phenolic acid components, polyphenol-rich foods are significant part of human and animal diets. In this study, the acidity constants of caffeic acid (3,4-dihydroxycinnamic acid) in binary mixtures of ethanol-water are determined spectrophotometrically using introduced net analyte signal (NAS) algorithm and ab initio quantum mechanical method. NAS is an efficient chemometric algorithm for analysis of acid-base equilibrium systems by spectrophotometric method. In different pH values, the distribution of acid species are obtained from absorption data matrix and this procedure makes the possibility of obtaining pKa of caffeic acid alternatively. The results showed that pKa1(4.02, 4.26, 4.39, 4.57 and 5.11 ) and  pKa2(8.43, 8.68, 8.79, 9.00 and 9.34)  were increased by increasing ethanol percent in water (0,10, 20, 30 and 40 % of ethanol-water (v/v)) and these results are in agreement with the results of Gaussian method. The calculated Gibbs energy by ab initio shows that para-hydroxy group is more acidic than meta-hydroxy group. The red shifts of different species of caffeic acid obtained using the ab initio quantum mechanical method are in good agreement with the results of UV–Vis spectroscopy.

Keywords


net analyte signal (NAS); caffeic acid; acidity constants; Gibbs energy; ab initio spectrophotometrically

Full Text:

PDF (2,017 kB)

References


D. O. Demirkol, B. Gulsunoglu, C. Ozdemir, A. Dincer, F. Zihnioglu, S. Timur, Food Anal. Methods 5 (2012) 244 (https://doi.org/10.1007/s12161-011-9226-0)

C. Türkben, E. Sarıburun, C. Demir, V. Uylaşer, Food Anal. Methods 3 (2010) 144 (https://doi.org/10.1007/s12161-009-9102-3)

S. Cheraghi, M.A. Taher, H. Karimi-Maleh, J. Food Comp. Anal. 62 (2017) 254 (https://doi.org/10.1016/j.jfca.2017.06.006)

E. Psomiadou, M. Tsimidou, J. Agric. Food Chem. 50 (2002) 716 (https://doi.org/10.1021/jf0108462)

J. H. Chen, C.-T. Ho, J. Agric. Food Chem. 45 (1997) 2374 (https://doi.org/10.1021/jf970055t)

Y. Sato, S. Itagaki, T. Kurokawa, J. Ogura, M. Kobayashi, T. Hirano, M. Sugawara, K. Iseki, Int. J. Pharm. 403 (2011) 136 (https://doi.org/10.1016/j.ijpharm.2010.09.035)

S. H. Nam, Y. M. Kim, M. K. Walsh, Y. J. Wee, K. Y. Yang, J. A. Ko, S. Han, T. Thanh Hanh Nguyen, J.Y. Kim, D. Kim, J. Agric. Food Chem. 65 (2017) 2743 (https://doi.org/10.1021/acs.jafc.7b00344)

M. Meloun, S. Bordovská, K. Kupka, J. Math. Chem. 47 (2010) 891 (https://doi.org/10.1007/s10910-009-9609-2)

M. Mazloum-Ardakani, S. Lotfi, J. Ghasemi, A. Shababi, M. Noroozi, J. Serb. Chem. Soc. 74 (2009) 159 (https://doi.org/10.2298/JSC0902159M)

A. Benvidi, F. Heidari, R. Tabaraki, M. Mazloum-Ardakani, Spectrochim. Acta A 78 (2011) 1380 (https://doi.org/10.1016/j.saa.2011.01.014)

J. Beltran, N. Sanli, G. Fonrodona, D. Barron, G. Özkan, J. Barbosa, J. Anal. Chim. Acta 484 (2003) 253 (https://doi.org/10.1016/S0003-2670(03)00334-9)

B. Hemmateenejad, A. Abbaspour, H. Maghami, A. Foroumadi, Anal. Chim. Acta 607 (2008) 142 (https://doi.org/10.1016/j.aca.2007.11.043)

J. Barbosa, V. Sanz-Nebot, E. Torrero, Talanta 38 (1991) 425 (https://doi.org/10.1016/0039-9140(91)80081-A)

A. Benvidi, F. Heidari, M.M. Ardakani, A.M. Hajishabani, J. Ghasemi, Chin. Chem. Lett. 21 (2010) 725 (https://doi.org/10.1016/j.cclet.2010.01.015)

D. Almasifar, A. Forghaniha, Z. Khojasteh, J. Ghasemi, H. Sharghi, M. Shamsipur, J. Chem. Eng. Data 42 (1997) 1212 (https://doi.org/10.1021/je970091o)

M. Faraji, A. Farajtabar, F. Gharib, H. Ghasemnejad-Borsa, J. Serb.Chem.Soc. 76 (2011) 1455 (https://doi.org/10.2298/JSC100506129F)

M. Namazian, S. Halvani, J. Chem. Thermodyn. 38 (2006) 1495 (https://doi.org/10.1016/j.jct.2006.05.002)

18. H. Yousofian-Varzaneh, M. Namazian, H.R. Zare, S. Jahanbani, A. Benvidi, J. Fluorine Chem. 193 (2017) 33 (https://doi.org/10.1016/j.jfluchem.2016.11.007)

A. Lachenwitzer, N. Li, J. Lipkowski, J. Electroanal. Chem. 532 (2002) 85 (https://doi.org/ 10.1016/S0022-0728(02)00759-3)

R.E. Brito, J.M.R. Mellado, M.R. Montoya, A. Palma, R. Rodríguez-Amaro, M. Mayén, C. R. Chim. 20 (2017) 365 (https://doi.org/10.1016/j.crci.2016.05.004)

V. Bhatt, R. Jee, Anal. Chim. Acta 167 (1985) 233 (https://doi.org/10.1016/S0003-2670(00)84425-6)

A. Lorber, Anal. Chem. 58 (1986) 1167 (https://doi.org/10.1021/ac00297a042)

T. Momeni-Isfahani, A. Niazi, Spectrochim. Acta A 120 (2014) 630 (https://doi.org/10.1016/j.saa.2013.11.009)

N. M. Faber, Anal. Chem. 70 (1998) 5108 (https://doi.org/10.1021/ac980319q)

D. Wang, H. Zhang, R. Liu, X. Liu, J. Wang, Neurocomputing 173 (2016) 845 (https://doi.org/10.1016/j.neucom.2015.08.038)

J. Ferré, N. K. M. Faber, Chemom. Intell. Lab. Syst. 69 (2003) 123 (https://doi.org/10.1016/S0169-7439(03)00118-7)

J. A. Keith, E. A. Carter, J. Chem. Theory Comput. 8 (2012) 3187 (https://doi.org/10.1021/ct300295g)

J.T. Rubino, W.S. J. Pharm. Sci. 75 (1986) 182 (https://doi.org/10.1002/jps.2600750217)

M. Eslami, M. Namazian, H.R. Zare, J. Phys. Chem. B. 117 (2013) 2757 (https://doi.org/10.1021/jp3121325)

G. Douheret, Bull. Soc. Chim. Fr. (1968) 3122.

A. A. A. Boraei, J. Chem. Eng. Data 46 (2001) 939 (https://doi.org/10.1021/je010031p)

N.M. Rageh, E.M. Abdallah, J. Chem. Eng. Data 48 (2003) 1495 (https://doi.org/10.1021/je030153c)

Y. Ebead, H. Salman, M. Khodari, A. Ahmed, J. Mol. Liq. 154 (2010) 52 (https://doi.org/10.1016/j.molliq.2010.04.002)

Y. Altun, F. Koseoglu, J. Solution Chem. 42 (2013) 1691 (https://doi.org/10.1007/s10953-013-0056-0)

S. Li, M. Paleologou, W.C. Purdy, J. Chromotogra. Sci. 29 (1991) 66 (https://doi.org/10.1093/chromsci/29.2.66)

C. F. Bell, B. C. Gallagher, K. A. Lott, E. L. Short, L. Walton, Polyhedron 10 (1991) 613 (https://doi.org/10.1016/S0277-5387(00)83620-7)

S. V. Jovanovic, S. Steenken, M. Tosic, B. Marjanovic, M. G. Simic, JACS 116 (1994) 4846 (https://doi.org/10.1021/ja00090a032)

F. Borges, J. L. Lima, I. Pinto, S. Reis, C. Siquet, Helvetica Chimica Acta 86 (2003) 3081 (https://doi.org/10.1002/hlca.200390250)

I. Lamy, M. Seywert, M. Cromer, J.-P. Scharff, Anal. Chim. Acta 176 (1985) 201 (https://doi.org/10.1016/S0003-2670(00)81647-5)




DOI: https://doi.org/10.2298/JSC180614116D

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)