Probiotic potential of Lactobacillus fermentum G-4 originating from the meconium of newborns

Gordana Nikola Zavišić, Saša M Petričević, Slavica M Ristić, Milena G Rikalović, Nataša M Jovanović-Lješković, Jelena M Begović, Ivana D Strahinić

Abstract


The present study was dedicated to determining probiotic potential of a human isolate G-4, originated from meconium. The isolate was identified using morphological, physiological and biochemical assays and molecular method based on 16S rRNA gene sequencing. In order to evaluate its probiotic properties in vitro tests were performed: the survival in simulated gastroint­es­tinal conditions, adhesion to hexadecane, and antimicrobial activity. Safety aspects of the isolate were examined by testing toxicity, gastrointestinal tole­rance and bacterial translocation in vivo, as well as hemolytic activity in vitro. The isolate G-4, identified as Lactobacillus fermentum, showed viability in artificial gastric and intestinal juice (low degree of cell viability reduction for 0.69 and 1.30 logCFU mL-1 units, respectively), moderate adhesion to hexa­decane (39±2.1 %), and antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serotype Abony and Clostridium sporogenes, due to production of lactic acid (9.80 g L-1). No signs of toxicity, bacterial translocation, hemolytic activity, were observed.


Keywords


Lactobacillus fermentum; meconium; probiotic; safety

References


FAO/WHO, Probiotics in Food. Health and Nutritional Properties and Guidelines for Evaluation, Food and Nutrition Paper, 2002, Vol. 85, pp. 1–56

S. Fijan, Antimicrobial effect of probiotics against common pathogens, in Probiotics and Prebiotics in Human Nutrition and Health, V. Rao, L. G. Rao, Eds., In Tech, Venka¬teswera, 2016 (on line, https://doi.org/10.5772/63141)

J. K. Kaushik, A. Kumar, R. K. Duary, A. K. Mohanty, S. Grover, V. K. Batish, PLoS One 4 (2009)e8099 (https://doi.org/10.1371/journal.pone.0008099)

C. De Champs, N. Maroncle, D. Damien, C. Rich, C. Forestier, J. Clin. Microbiol. 41 (2003) 1270 (doi: 10.1128/JCM.41.3.1270-1273.2003)

M. Fakruddin, M. N. Hossain, M. M. Ahmed, BMC Complementary Altern. Med. 17 (2017) 64 (https://doi.org/10.1186/s12906-017-1591-9)

P. Shokryazdan, C. C. Sieo, R. Kalavathy, J. B. Liang, N. B. Alitheen, M. F. Jahromi, Y. W. Ho, BioMed Res. Int. 2014 (2014), Article ID 927268 (http://dx.doi.org/10.1155/2014/927268)

R. J. Boyle, R. M. Robins-Browne, M. L. K. Tang, Am. J. Clin. Nutr. 83 (2006) 1256 (https://doi.org/10.1093/ajcn/83.6.1256)

M. E. Sanders, D. Merenstein, C. A. Merrifield, R. Hutkins. Nutr. Bull. 43 (2018) 212 (https://doi.org/10.1111/nbu.12334)

T. Dhewa, V. Bajpai, R. K. Saxena, S. Pant, V. Mishra, Int. J. Probiotics Prebiotic. 5 (2010) 45

M. van den Nieuwboer, E. Claassen, L. Morelli, F. Guarner, R. J. Brummer, Benefic. Microbes 5 (2014) 45 (https://doi.org/10.3920/BM2013.0046)

D. K. Dahiya, A. K. Puniya., J. Food Sci. Technol. 54 (2017) 792 (doi: 10.1007/s13197-017-2523-x)

A. K. Al Atya, D. K. Hadiouche, R. Ravallec, A. Silvain, A. Vachee, D. Drider, Front. Microbiol. 6 (2015) 227 (https://doi.org/10.3389/fmicb.2015.00227)

P. Kavitha, D. Sindhuja, M. Banumathi, Int. J. Curr. Microbiol. Appl. Sci. 5 (2016) 1042 (doi: http://dx.doi.org/10.20546/ijcmas.2016.504.119)

A. Lombardi, M. Gatti, L. Rizzoti, S. Torriani, C. Andrighetto, G. Giraffa, Int. Dairy J. 14 (2004) 967 (https://doi.org/10.1016/j.idairyj.2004.04.005)

V. S. Ocana, E. Bru, A. A. de Ruiz Holgado, M. E. Nader-Macias, J. Gen. Appl. Microbiol. 45 (1999) 203 (https://doi.org/10.2323/jgam.45.203)

L. J. Harris, M. A. Daeschel, M. E. Stiles, T. R. Klaenhammer, J. Food Prot. 52 (1989) 384 (https://doi.org/10.4315/0362-028X-52.6.384)

Y. S. Huh, Y. S. Jun, Y. K. Hong, H. Song, S. Y. Lee, W. H. Hong, Process Biochem. (Oxford, U.K.) 41 (2006) 1461

The Law on Experimental Animal Treatment, Official Gazette of the Republic of Serbia, No. 41/2009

Directive 2010/63/EU; European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (http://data.europa.eu/eli/dir/2010/63/oj)

European Pharmacopoeia 6.0, 2008, Abnormal toxicity, p. 165

J. S. Zhou, Q. Shu, K. J. Rutherfurd, J. Prasad, P. K. Gopal, H. S. Gill, Food Chem. Toxicol. 38 (2000) 153 (doi: 10.1016/S0278-6915(99)00154-4)

S. Oh, S. H. Kim, R. W. Worobo, J. Dairy Sci. 83 (2000) 2747 (https://doi.org/10.3168/jds.S0022-0302(00)75169-1)

D. I. Pereira, G. R. Gibson, Appl. Environ. Microbiol. 68 (2002) 4689 (doi:10.1128/AEM.68.9.4689-4693.2002)

M. Fernandez, S. Boris. C. Barbes, J. Appl. Microbiol. 94 (2003) 449 (https://doi.org/10.1046/j.1365-2672.2003.01850.x)

S. Fijan, Int. J. Environ. Res. Public Health 11 (2014) 4745 (doi: 10.3390/ijerph110504745)

M. Mikelsaar, M. Zilmer, Microb. Ecol. Health Dis. 21 (2009) 1 (https://doi.org/10.1080/08910600902815561)

M. S. Juarez-Tomas, V. S. Ocana, B. Wiese, M. E. Nader-Macias, J. Med. Microbiol. 52 (2003) 1117 (https://doi.org/10.1099/jmm.0.05155-0)

J. Flach, M. B. van der Waal, A. F. M. Kardinaal, J. Schloesser, R. M. A. J. Ruijschop, E. Claassen, Cogent Food Agric. 4 (2018) 1452839 (https://doi.org/10.1080/23311932.2018.1452839).




DOI: https://doi.org/10.2298/JSC181105015Z

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)