Removal of Pb(II) from wastewater using activated carbon prepared from the seeds of Reptonia buxifolia

Muhammad Bilal, Javed Ali, Noushad Hussain, Muhammad Umar, Shaukat Shujah, Daud Ahmad

Abstract


The potential of activated carbon as a cheap bioadsorbent prepared from Reptonia buxifolia seeds, for the removal of Pb(II) from wastewater was investigated. The morphology and structure of the prepared activated carbon was characterized using different techniques. Adsorption phenomenon was stu­died by varying the metal ion concentration, contact time, temperature, and pH, in a batch process. The SEM results showed that the thermal treatment signific­antly altered the topography of synthesized activated carbon due to formation of numerous pores on the surface of the adsorbent. At equilibrium, the Lang­muir model gave a better fit to the adsorption isotherm results than the Freund­lich model. Kinetics data indicate that equilibrium is established within the first 60 min. The results showed that activated carbon obtained from seeds of R. buxifolia have the potential to be used as alternative economical biosorbent for the removal of heavy metals from wastewater.


Keywords


bioadsorbent; thermal treatment; adsorption model

References


E. Kabir, S. Ray, K.-H. Kim, H.-O. Yoon, E.-C. Jeon, Y.S. Kim, Y.-S. Cho, S.-T. Yun, R. J. C. Brown, Sci. World J. 2012 (2012) 916705 (http://dx.doi.org/10.1100/2012/916705)

E. Sipter, E. Rózsa, K. Gruiz, E. Tátrai, V. Morvai, Chemosphere 71 (2008) 1301 (https://doi.org/10.1016/j.chemosphere.2007.11.039)

K. Rehman, F. Fatima, I. Waheed, M. S. H. Akash, J. Cell. Biochem. 119 (2018) 157 (https://doi.org/10.1002/jcb.26234)

L. Järup, Br. Med. Bull. 68 (2003) 167 (https://doi.org/10.1093/bmb/ldg032)

F. Moreira, J. Moreira, Rev. Panam. Salud. Publ. 15 (2004) 119 (https://www.ncbi.nlm.nih.gov/books/NBK236465/)

WHO, Mercury and Health, WHO, Geneva, 2017 (http://www.who.int/mediacentre/e¬vents/2017/make-mercury-history/en/)

A. Kaur, S. Sharma, Indian J. Sci. Technol. 10 (2017) 1 (file:///C:/Users/Bilal/Downloads/JWRD-D-16-001043.pdf)

H. A. Hegazi, HBRC J. 9 (2013) 276 (https://doi.org/10.1016/j.hbrcj.2013.08.004)

E.-B. Son, K.-M. Poo, J.-S. Chang, K.-J. Chae, Sci. Total Environ. 615 (2018) 161 (https://doi.org/10.1016/j.scitotenv.2017.09.171)

R. Sivaraj, S. Sivakumar, P. Senthilkumar, V. Subburam, Bioresour. Technol. 80 (2001) 233 (https://doi.org/10.1016/S0960-8524(00)00179-6)

V. K. Garg, R. Gupta, R. Kumar, R. K. Gupta, Bioresour. Technol. 92 (2004) 79 (https://doi.org/10.1016/j.biortech.2003.07.004)

M. H. Jnr, A. I. Spiff, Electron. J. Biotechn. 7 (2004) 310 (http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v7n3-8/555)

W. S. Wan Ngah, M.A.K. Megat Hanafiah, Bioresour. Technol. 99 (2008) 3935 (https://doi.org/10.1016/j.biortech.2007.06.011)

M. I. Sheikh, Forest Based Rural Enterprises: Pakistan, Regional Office for Asia and the Pacific (RAPA) of UN, Food and Agriculture Organization of the United Nations, p. 987 (https://trove.nla.gov.au/work/17692266)

G. F. Oliveira, R. C. Andrade, M. A. G. Trindade, H. M. C. Andrade, C. T. Carvalho, Química Nova 40 (2017) 284 (http://dx.doi.org/10.21577/0100-4042.20160191)

S. Y. Mohammed, S. Baytar, Ş. Ömer, Anal. Lett. 51(17) (2018) 1 (https://doi.org/10.1080/00032719.2018.1450415)

D. Das, D.P. Samal, B.C. Meikap, J. Chem. Eng. Process Technol. 6 (2015) 248 (https://www.longdom.org/abstract/preparation-of-activated-carbon-from-green-coconut-shell-and-itscharacterization-22692.html)

S. Mopoung, P. Moonsri, W. Palas, S. Khumpai, Sci. World J. 2015 (2015) 1 (http://dx.doi.org/10.1155/2015/415961)

S. Yorgun, D. Yıldız, J. Taiwan Inst. Chem., E 53 (2015) 122 (https://doi.org/10.1016/j.jtice.2015.02.032)

G. Wangab, S. Zhanga, P. Yaoa, Y. Chena, X. Xua, T. Lia, G. Gong, Arab. J. Chem. 11 (2018) 99 (https://doi.org/10.1016/j.arabjc.2015.06.011)

M. A. Hussain, A. Salleh, P. Milow, Am. J. Biochem. Biotechnol. 5 (2009) 75 (https://thescipub.com/abstract/10.3844/ajbbsp.2009.75.83))

L. Deng, Y. Su, H. Su, X. Wang, X. Zhu, J. Hazard. Mater. 14 (2007) 220 (https://doi.org/10.1016/j.jhazmat.2006.09.009)

L. Fan, Y. Chen, L. Wang, W. Jiang, Ads. Sci. Technol. 29 (2011) 495 (https://doi.org/10.1260/0263-6174.29.5.495)

M. M. Zulkali, A. L. Ahmad, N.H. Norulakmal, Bioresour. Technol. 97 (2006) 21 (https://doi.org/10.1016/j.biortech.2005.02.007)

W. Li, L. Zhang, J. Peng, N. Li, S. Zhang, S. Guo, Ind. Crops. Prod. 28 (2008) 294 (https://doi.org/10.1016/j.indcrop.2008.03.007)

M. K. Mondal, Korean J. Chem. Eng. 27 (2010) 144 (https://link.springer.com/article/10.1007/s11814-009-0304-6#citeas

Y. Sağ, T. Kutsal, Process Biochem. 32 (1997) 591 (https://doi.org/10.1016/S0032-9592(97)00010-1)

M. Amin, A. Alazba, M. Shafiq, Sustainability 7 (2015) 15302 (https://doi.org/10.3390/su71115302)

F. A. Dawodu, K.G. Akpomie, J. Mater. Res. Technol. 3 (2014) 129 (https://doi.org/10.1016/j.jmrt.2014.03.002)

Z. Kariukia, J. Kiptooa, D. Onyancha, S. Afr. J. Chem. Eng. 23 (2017) 62 (https://www.sciencedirect.com/science/article/pii/S1026918516300063 )

M. Erdem, S. Ucar, S. Karagöz, T. Tay, ‎Sci. World J. 2013 (2013) 1 (http://dx.doi.org/10.1155/2013/146092)

I. Tsibranska, E. Hristova, Bulg. Chem. Commun. 43 (2011) 370 http://bcc.bas.bg/index.html)

S. M. Yakout, E. Elsherif, Carbon Sci. Tech. 3 (2010) 144 (https://www.ingenta-connect.com/content/doaj/09740546/2010/00000003/00000001/art00003)

E. Deliyanni, G. Kyzas, K. Triantafyllidis, K. A. Matis, Open Chem. J. 13 (2015) 699 (https://doi.org/10.1515/chem-2015-0087)

M. Caccina, M. Giorgia, F. Giacobboa, M. D. Rosa, L. Besozzib, M. Mariani, Desalin. Water. Treat. 57 (2016) 4557 (https://doi.org/10.1080/19443994.2014.992974).




DOI: https://doi.org/10.2298/JSC181108001B

Copyright (c) 2020 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)