Contemporary approaches in development of new materials for electrochemical energy conversion

Main Article Content

Igor Pašti

Abstract

The development of modern society is followed by increasing energy demands, highlighting the importance of sustainability of the energy system. In line with this task, electrochemistry has been set in the centre of modern research, offering a large number of solutions for energy conversion and sto­rage. One of the main problems is the identification of new electrocatalytic materials which are used for energy conversion applications. A brief view on the use of modern computational techniques in discovery of new electro­cat­alysts is provided, mainly focusing on the electronic structure methods and the idea of catalytic descriptor. Using this approach, it is possible to screen many candidates for new electrocatalysts. However, the complexity of an electrified interface requires additional efforts to fully understand the properties of elec­trocatalytic materials.

Article Details

How to Cite
[1]
I. Pašti, “Contemporary approaches in development of new materials for electrochemical energy conversion”, J. Serb. Chem. Soc., vol. 84, no. 4, pp. 417-421, Apr. 2019.
Section
Electrochemistry

References

S. Trasatti, J. Electroanal. Chem. 39 (1972) 163 (https://doi.org/10.1016/S0022-0728(72)80485-6)

J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 152 (2005) J23 (https://doi.org/10.1149/1.1856988)

W. Schmickler, S. Trasatti, J. Electrochem. Soc. 153 (2006) L31 (https://doi.org/10.1149/1.2358294)

J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Nørskov, Nat. Mater. 5 (2006) 909 (https://doi.org/10.1038/nmat1752)

I. A. Pašti, N. M. Gavrilov, M. Baljozović, M. Mitrić, S. V. Mentus, Electrochim. Acta 114 (2013) 706 (https://doi.org/10.1016/j.electacta.2013.10.114)

J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 1 (2009) 37 (https://doi.org/10.1038/nchem.121)

M. J. Eslamibidgoli, M. H. Eikerling, Curr. Opin. Electrochem. 9 (2018) 189 (https://doi.org/10.1016/j.coelec.2018.03.038)

J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem., B 108 (2004) 17886–17892. (https://doi.org/10.1021/jp047349j)

F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T. R. Munter, P. G. Moses, E. Skúlason, T. Bligaard, J. K. Nørskov, Phys. Rev. Lett. 99 (2007) 016105 (https://doi.org/10.1103/PhysRevLett.99.016105)

E. Fako, A. S. Dobrota, I. A. Pašti, N. López, S. V. Mentus, N. V. Skorodumova, Phys. Chem. Chem. Phys. 20 (2018) 1524 (https://doi.org/10.1039/C7CP07276G)

I. A. Pašti, M. Leetmaa, N. V. Skorodumova, Int. J. Hydrogen Energy 41 (2016) 2526 (https://doi.org/10.1016/j.ijhydene.2015.12.026)

S. J. Gutić, A. S. Dobrota, M. Leetmaa, N. V. Skorodumova, S. V. Mentus, I. A. Pašti, Phys. Chem. Chem. Phys. 19 (2017) 13281 (https://doi.org/10.1039/C7CP01237C).

Most read articles by the same author(s)