The extraction of Sr2+ with dicyclohexano-18-crown-6 in conventional organic solvent and ionic liquid diluents liquid diluents

Zheng Wei, Yang Gao, Yu Zhou, Caishan Jiao, Meng Zhang, Hongguo Hou, Wei Liu


90Sr (t1/2=28.8 a), one of the most significant fission products in high-level radioactive liquid waste (HLLW), contributes to a large part of the heat load and radiation. Removal of 90Sr from the HLLW is beneficial for the final treatment of nuclear wastes. In this paper, the extraction of Sr2+ was carried out using dicyclohexano-18-crown-6 (DCH18C6) in a variety of diluents including conventional organic solvents and novel ionic liquid solvents. The effect of several factors, such as nitric acid concentration, crown ether concentration, initial strontium concentration on the extraction of Sr2+ have been studied comprehensively. The higher distribution ratio and stripping efficiency of Sr2+ were obtained with binary diluents consisted of n-octanol and acetylene tetrachloride compared with that using pure n-octanol as diluent. As for the CnmimNTf2 (n=2, 4, 6) ionic liquid solvent systems, the distribution ratio of Sr2+ was much higher from the nitric acid medium with low concentration than the traditional solvent systems. The results showed that DC2mimNTf2> DC4mimNTf2> DC6mimNTf2, which indicated that shorter carbon chain benefits the extraction of Sr2+.


strontium extraction; crown ether; diluent effect; high level liquid waste

Full Text:

PDF (1,218 kB)


A. P. Paiva, P. Malik, J. Radioanal. Nucl. Chem. 261 (2004) 485–496 (

P. Sinharoy, D. Banerjee, J. N. Sharma, C. P. Kaushik, J. G. Shah, J. Radioanal. Nucl. Chem. 317 (2018) 919–923 (

S. Fukushima, T. Inoue, T. Inoue, S. Ozeki, Int. J. Radiat. Oncol. Biol. Phys. 43 (1999) 597–600 (

J. D. Law, R. S. Herbst, T. A. Todd, V. N. Romanovskiy, V. A. Babain, V. M. Esimantovskiy, I. V Smirnov, B. N. Zaitsev, Solvent Extr. Ion Exch. 19 (2001) 23–36 (

P. S. Dhami, C. Janardanan, P. Jagasia, S. Pahan, S. C. Tripathi, P. M. Gandhi, P. K. Wattal, J. Radioanal. Nucl. Chem. 296 (2012) 1341–1347 (

V. S. Yankovskaya, I. I. Dovhyi, N. A. Bezhin, V. V. Milyutin, N. A. Nekrasova, S. V. Kapranov, V. F. Shulgin, J. Radioanal. Nucl. Chem. 318 (2018) 1085–1097 (

W. W. Schulz, L. A. Bray, Sep. Sci. Technol. 22 (1987) 191–214 (

H. Y. Zhang, R. S. Wang, C. S. Lin, Y. X. Zhang, J. Radioanal. Nucl. Chem. 247 (2001) 541–544 (

C. H. Lee, M. H. Lee, S. H. Han, Y.-K. Ha, S. Kyuseok, J. Radioanal. Nucl. Chem. 288 (2011) 319–325 (

Y. Xu, Y. Gao, Y. Zhou, C. Fan, H. Hou, M. Zhang, Solvent Extr. Ion Exch. 35 (2017) 507–518 (

C. H. Lee, H. J. Ahn, J. M. Lee, Y. K. Ha, J. Y. Kim, J. Radioanal. Nucl. Chem. 308 (2016) 809–816 (

S. J. Datta, P. Oleynikov, W. K. Moon, Y. Ma, A. Mayoral, H. Kim, C. Dejoie, M. K. Song, O. Terasaki, K. B. Yoon, Energy Environ. Sci. 12 (2019) 1857–1865 (

A. Surrao, S. W. Smith, E. Foerster, H. B. Spitz, D. G. Graczyk, J. A. Landero, F. Derek, R. M. William, B. C. Jennifer, J. Radioanal. Nucl. Chem. (2019) (

V. N. Romanovskiy, I. V Smirnov, V. A. Babain, T. A. Todd, R. S. Herbst, J. D. Law, K. N. Brewer, Solvent Extr. Ion Exch. 19 (2001) 1–21 (

C. J. Pedersen, J. Am. Chem. Soc. 89 (1967) 7017–7036 (

E. P. Horwitz, M. L. Dietz, D. E. Fisher, Solvent Extr. Ion Exch. 8 (2007) 557–572 (

P. K. Mohapatra, P. N. Pathak, V. K. Manchanda, Talanta 45 (1997) 387–395 (

D. R. Raut, P. K. Mohapatra, V. K. Manchanda, Radiochim. Acta 97 (2009) (

P. K. Mohapatra, D. S. Lakshmi, V. K. Manchanda, Desalination 198 (2006) 166–172 (

F. Fan, F. Fan, J. Bai, W. Tian, Y. Wang, X. Wu, X. Yin, Z. Qin, J. Nucl. Radiochem. 35 (2013) 235–240 (

S. H. Ha, R. N. Menchavez, Y.-M. Koo, Korean J. Chem. Eng. 27 (2010) 1360–1365 (

F. Fan, Z. Qin, S. Cao, C. Tan, Q. Huang, D. Chen, J. Wang, X. Yin, C. Xu, X. Feng, Inorg. Chem. 58 (2019) 603–609 (

I. Billard, A. Ouadi, C. Gaillard, Anal. Bioanal. Chem. 400 (2011) 1555–1566 (

S. Dai, Y. H. Ju, C. E. Barnes, J. Chem. Soc., Dalt. Trans (1999) 1201–1202 (

J. L. Wankowski, M. L. Dietz, Solvent Extr. Ion Exch. 34 (2016) 48–59 (

H. Luo, S. Dai, P. V Bonnesen, Anal. Chem. 76 (2004) 2773–2779 (

A. E. Visser, R. P. Swatloski, W. M. Reichert, S. T. Griffin, R. D. Rogers, Ind. Eng. Chem. Res. 39 (2000) 3596–3604 (

T. Takahashi, T. Ito, S.-Y. Kim, Energy Procedia 131 (2017) 170–177 (

D. R. Raut, P. K. Mohapatra, V. K. Manchanda, Sep. Sci. Technol. 45 (2010) 204–211 (

Y. Yongqing, Wanj. Heng, M. Yan, P. Xiaobing, T. Xiuhuan, X. Yan, J. Nucl. Radiochem. 29 (2007) 204–209 (

H. Heitzman, B. A. Young, D. J. Rausch, P. Rickert, D. C. Stepinski, M. L. Dietz, Talanta 69 (2006) 527–531 (

C. Xu, X. Shen, Q. Chen, H. Gao, Sci. China, Ser. B Chem. 52 (2009) 1858–1864 (

L. Yuan, J. Peng, L. Xu, M. Zhai, J. Li, G. Wei, Dalt. Trans (2008) 6358–6360 (


Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)