The role of molecular properties of mononitrofluoranthenes to their mutagenic activity: insight from ab initio and DFT calculations

Bojana Ostojić, Dragana Đorđević

Abstract


Molecular properties of the environmental mutagens nitrofluoranthenes (NFs) (1-, 2-, 3-, 7- and 8-NF) such as (hyper)polarizability, dipole moment, molecular electrostatic potential (MEP), spectroscopic characteristics, magnetic index (NICS), and others obtained by means of ab initio (MP2) and density functional theory (DFT) approach have been correlated with the observed mutagenic activities. A very good linear correlation (Rav=0.99) between average polarizability (<α>) and experimental mutagenic activities of NFs in different Salmonella typhimurium strains from two independent experimental studies [Vance and Levin, Environ. Mutagen. 6 (1984) 797 and Zielinska et al., Mutation Res. 206 (1988) 131] is established. Higher values of polarizability derivatives with respect to the νsNO + CN vibrational coordinate for 8-NF and 3-NF compared to 1-NF and 7-NF and, consequently, higher Raman activities in the spectra that are in correlation with mutagenic activities, implicate significant intermolecular interactions along this vibrational coordinate. The results indicate that binding of NFs to enzyme is the main step in mutagenic pathway of these nitro derivatives.

Keywords: 

Molecular properties of the environmental mutagens nitrofluoranthenes (NFs) (1-, 2-, 3-, 7- and 8-NF) such as (hyper)polarizability, dipole moment, molecular electrostatic potential (MEP), spectroscopic characteristics, magnetic index (NICS), and others obtained by means of ab initio (MP2) and density functional theory (DFT) approach have been correlated with the observed mutagenic activities. A very good linear correlation (Rav=0.99) between average polarizability (<α>) and experimental mutagenic activities of NFs in different Salmonella typhimurium strains from two independent experimental studies [Vance and Levin, Environ. Mutagen. 6 (1984) 797 and Zielinska et al., Mutation Res. 206 (1988) 131] is established. Higher values of polarizability derivatives with respect to the νsNO + CN vibrational coordinate for 8-NF and 3-NF compared to 1-NF and 7-NF and, consequently, higher Raman activities in the spectra that are in correlation with mutagenic activities, implicate significant intermolecular interactions along this vibrational coordinate. The results indicate that binding of NFs to enzyme is the main step in mutagenic pathway of these nitro derivatives.


Keywords


nitro polycyclic aromatic hydrocarbons; (hyper)polarizability; Raman spectra; dipole moment; NICS; environmental pollutants

Full Text:

PDF (2,010 kB)

References


G. Grimmer, F. Pott, Occurrence of PAH, in Environmental carcinogens: polycyclic aromatic hydrocarbons, G. Grimmer, Ed., CRC Press, Boca Raton, Fl, 1983, p. 61, ISBN 9781315892658

K. Zimmermann, R. Atkinson, J. Arey, Y. Kojima, K. Inazu, Atmos. Environ. 55 (2012) 431 (https://doi.org/10.1016/j.atmosenv.2012.03.016)

K. Zimmermann, N. Jariyasopit, S. L. Massey Simonich, S. Tao, R. Atkinson, J. Arey, Environ. Sci. Technol. 47 (2013) 8434 (https://doi.org/10.1021/es401789x)

W. A. Vance, D. E. Levin, Environ. Mutagen. 6 (1984) 797 (https://doi.org/10.1002/em.2860060607)

A. T. Maynard, L. G. Pedersen, H. S. Posner, J. D. McKinney, Mol. Pharmacol. 29 (1986) 629 (http://molpharm.aspetjournals.org/content/29/6/629)

B. Zielinska, J. Arey, W.P. Harger, R.W.K. Lee, Mutation Res. 206 (1988) 131 (https://doi.org/10.1016/0165-1218(88)90152-8)

H. Tokiwa, K. Horikawa, Y, Ohnishi, Mutation Res. 297 (1993) 181 (https://doi.org/10.1016/0165-1110(93)90002-5)

B. S. Shane, G. L. Squadrito, D. F. Church, W. A. Pryor, D. G. MacPhee, Environ. Mol. Mutagen. 17 (1991) 130 (https://doi.org/10.1002/em.2850170210)

W. F. Busby Jr., H. Smith, C. L. Crespi. B. W. Penman, A. L. Lafleur, Mutat. Res. 389 (1997) 261 (https://doi.org/10.1016/S1383-5718(96)00156-8)

K. K. Onchoke, J.J. Ojeda, Polycycl. Aromat. Compd. 33 (2013) 473 (https://doi.org/10.1080/10406638.2013.810654)

K. K. Onchoke, Polycycl. Aromat. Compd. 28 (2008) 193 (https://doi.org/10.1080/10406630802179518)

K.K. Onchoke, Comput. Theoret. Chem. 1042 (2014) 23 (https://doi.org/10.1016/j.comptc.2014.04.027)

K. K. Onchoke, M. Parks, J. Mol. Struct. 999 (2011) 22 (https://doi.org/10.1016/j.molstruc.2011.04.033)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 393 (2004) 51 (https://doi.org/10.1016/j.cplett.2004.06.011)

J. P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 111 (2007) 11683 (https://doi.org/10.1021/jp073974n)

M. J. Frisch et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010 (see http://gaussian.com/g09citation/)

R. D. Dennington II, T. A. Keith, J. M. Millam, GaussView version 6.0.16, Semichem, Inc. 2000-2016. (see http://gaussian.com/gaussview6/)

T. Lu, F. Chen, J. Comp. Chem. 33 (2012) 580 (https://doi.org/10.1002/jcc.22885)

H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz and others MOLPRO, version 2010.1, a package of ab initio programs; University of Stuttgart: Stuttgart, Germany, 2010. (see https://www.molpro.net/)

L. E. Johnson, L. R. Dalton, B. H. Robinson, Acc. Chem. Res. 47 (2014) 3258 (https://doi.org/10.1021/ar5000727)

H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Org. Lett. 8 (2006) 863 (https://doi.org/10.1021/ol0529546)

I. Cernusak, P. W. Fowler, E. Steiner, Mol. Phys. 98 (2000) 945 (https://doi.org/10.1080/00268970050032792)

E. Steiner, P.W. Fowler, L. W. Jenneskens, Angew. Chem. Int. Ed. 40 (2001) 362 (https://doi.org/10.1002/1521-3773(20010119)40:2<362::AID-ANIE362>3.0.CO;2-Z)

J. Michl, J. Mol. Spectrosc. 30 (1969) 66 (https://doi.org/10.1016/0022-2852(69)90236-7)

Y. Ling, C. Lifshitz, J. Phys. Chem. 99 (1995) 11074 (https://doi.org/10.1021/j100028a006)

F. Seitz, A. I. S. Holm, H. Zettergren, H. A. B. Johansson, S. Rosén, H. T. Schmidt, A. Ławicki, J. Rangama, P. Rousseau, M. Capron, R. Maisonny, A. Domaracka, L. Adoui, A. Méry, B. Manil, B. A. Huber, H. Cederquist, J. Chem. Phys. 135 (2011) 064302. (https://doi.org/10.1063/1.3622589)

P. R. Schreiner, Angew. Chem. Int. Ed. 46 (2007) 4217 (https://doi.org/10.1002/anie.200700386)

H. Tokiwa, Y. Ohnishi, Crit. Rev. Toxicol. 17 (1986) 23 (https://doi.org/10.3109/10408448609037070)

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A.J. Shusterman, C. Hansch, J. Med. Chem. 34 (1991) 786 (https://doi.org/10.1021/jm00106a046)

R.L. Lopez de Compadre, A.J. Shusterman, C. Hansch, Int. J. Quantum Chem. 34 (1988) 91 (https://doi.org/10.1002/qua.560340202)

A. Cammarata, J. Med. Chem. 10 (1967) 525 (https://doi.org/10.1021/jm00316a004)

A. Leo, C. Hansch, C. Church, J. Med. Chem. 12 (1969) 766 (https://doi.org/10.1021/jm00305a010)

C. Hansch, E. Coats, J. Pharm. Sci. 59 (1970) 731 (https://jpharmsci.org/article/S0022-3549(15)37386-X/fulltext)

A.R. Katritzky, L. Pacureanu, D. Dobchev, M. Karelson, J. Mol. Model. 13 (2007) 951 (https://doi.org/10.1007/s00894-007-0209-4)

A. Chana, M.A. Concejero, M. de Frutos, M.J. González, B. Herradón, Chem. Res. Toxicol. 15 (2002) 1514 (https://doi.org/10.1021/tx025596d)

B. J. Mhin, J. E. Lee, W. Choi, J.Am.Chem.Soc. 124 (2002) 144 (https://doi.org/10.1021/ja016913q)

S. Hirokawa, T. Imasaka, T. Imasaka, Chem. Res. Toxicol. 18 (2005) 232 (https://doi.org/10.1021/tx049874f)

V. Librando, A. Alparone, Environ. Sci. Technol. 41 (2007) 1646 (https://doi.org/10.1021/es061632+)

V. Librando, A. Alparone, G. Tomaselli, J. Mol. Mod. 14 (2008) 489 (https://doi.org/10.1007/s00894-008-0297-9)

V. Librando, A. Alparone, J. Hazard. Mater. 154 (2008) 1158 (https://doi.org/10.1016/j.jhazmat.2007.11.020)

V. Librando, A. Alparone, J. Hazard. Mater. 161 (2009) 1338 (https://doi.org/10.1016/j.jhazmat.2008.04.095)

A. Alparone, V. Librando, Struct. Chem. 23 (2012) 1467 (https://doi.org/10.1007/s11224-012-9951-z)

A. Alparone, V. Librando, Monatsch. Chem. 43 (2012) 1123 (https://doi.org/10.1007/s00706-012-0787-4)

A. Alparone, J. Chem. Sci. 126 (2014) 701 (https://doi.org/10.1007/s12039-014-0593-0)

A. Alparone, V. Librando, Chemosphere 90 (2013) 158 (https://doi.org/10.1016/j.chemosphere.2012.06.020)

B. D. Ostojić, D. S. Ðorđević, Chemosphere 88 (2012) 91 (https://doi.org/10.1016/j.chemosphere.2012.02.071)

B. D. Ostojić, B. Stanković, D. S. Ðorđević, Chemosphere 104 (2014) 228 (https://doi.org/10.1016/j.chemosphere.2013.11.057)

B. D. Ostojić, B. Stanković, D. S. Ðorđević, Chemosphere 111 (2014) 144 (https://doi.org/10.1016/j.chemosphere.2014.03.067)

B. D. Ostojić, D. S. Đorđević, J. Hazard. Mater. 285 (2015) 94 (https://doi.org/10.1016/j.jhazmat.2014.11.032)

B.D. Ostojić, D.S. Đorđević, Chemosphere 135 (2015) 319 (https://doi.org/10.1016/j.chemosphere.2015.04.073)

B. Stanković, B. D. Ostojić, A. Popović, M. A. Gruden, D. S. Đorđević, J. Hazard. Mater. 318 (2016) 623 (https://doi.org/10.1016/j.jhazmat.2016.07.035)

J. Michl, K. Bocek, R. Zahradnik, Collect. Czechosllov. Chem. Commun. 31 (1966) 3471 (https://doi.org/10.1135/cccc19663471)




DOI: https://doi.org/10.2298/SC190509045O

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (136 of 172 journals)