Prediction of the GC-MS retention time for terpenoids detected in sage (Salvia officinalis L.) essential oil using QSRR approach

Branimir Pavlić, Nemanja Teslić, Predrag Kojić, Lato L. Pezo

Abstract


This work aimed to obtain a validated model for prediction of retention time of terpenoids isolated from sage herbal dust using supercritical fluid extraction. In total 32 experimentally obtained retention time of terpenes, which were separated and detected by GC-MS were further used to build a prediction model. The quantitative structure–retention relationship was employed to predict the retention time of essential oil compounds obtained in GC-MS analysis, using six molecular descriptors selected by a genetic algorithm. The selected descriptors were used as inputs of an artificial neural network, to build a retention time predictive quantitative structure–retention relationship model. The coefficient of determination for training cycle was 0.837, indicating that this model could be used for prediction of retention time values for essential oil compounds in sage herbal dust extracts obtained by supercritical fluid extraction due to low prediction error and moderately high r2. Results suggested that a 2D autocorrelation descriptor AATS0v was the most influential parameter with an approximately relative importance of 25.1 %.


Keywords


sage herbal dust; supercritical fluid extraction; terpenoids; QSRR; artificial neural networks

Full Text:

PDF (1,372 kB)

References


G. Miliauskas, P. R. Venskutonis, T. A. Van Beek, Food Chem. 85 (2004) 231 (https://doi.org/10.1016/j.foodchem.2003.05.007)

B. Pavlić, N. Teslić, A. Vidaković, S. Vidović, A. Velićanski, A. Versari, R. Radosavljević, Z. Zeković, Ind. Crop. Prod. 107 (2017) 81 (https://doi.org/10.1016/j.indcrop.2017.05.031)

S. Glisic, J. Ivanovic, M. Ristic, D. Skala, J. Supercrit. Fluid. 52 (2010) 62 (https://doi.org/10.1016/j.supflu.2009.11.009)

S. A. Aleksovski, H. Sovova, J. Supercrit. Fluid. 40 (2007) 239 (https://doi.org/10.1016/j.supflu.2006.07.006)

M. Mohammadhosseini, S. D. Sarker, A. Akbarzadeh, 2017. J. Ethnopharmacol. 199 (2017) 257 (https://doi.org/10.1016/j.chemolab.2015.02.009)

J. Acevedo-Martínez, J. C. Escalona-Arranz, A. Villar-Rojas, F. Téllez-Palmero, R. Pérez-Rosés, L. González, R. Carrasco-Velar, J. Chromatogr. A. 1102 (2006) 238 (https://doi.org/10.1016/j.chroma.2005.10.019)

S. J. Marrero-Ponce, Y. Barigye, M. E. Jorge-Rodríguez, T. Tran-Thi-Thu, Chem. Pap. 72 (2018) 57 (https://doi.org/10.1007/s11696-017-0257-x)

E. Kováts, Helv. Chim. Acta. 41 (1958) 1915 (https://doi.org/10.1002/hlca.19580410703)

M. Jalali-Heravi, H. Ebrahimi-Najafabadi, J. Sep. Sci. 34 (2011) 1538 (https://doi.org/10.1002/jssc.201100042)

A. Hinchliffe, Molecular Modelling for Beginners. John Wiley & Sons Ltd, England, 2003. (https://coulomb.umontpellier.fr/perso/lucyna.firlej/MasterPro/MMFB.pdf)

J. Akbar, S. Iqbal, F. Batool, A. Karim, K. W. Chan, Int. J. Mol. Sci. 13 (2012) 15387 (https://doi.org/10.3390/ijms131115387)

J. Dai, L. Jin, S. Yao, L. Wang, Chemosphere. 42 (2001) 899 (https://doi.org/10.1016/S0045-6535(00)00178-8)

P. P. Dong, G. B. Ge, Y. Y. Zhang, C. Z. Ai, G. H. Li, L. L. Zhu, H. W. Luan, X. B. Liu, L. Yang, J. Chromatogr. A. 1216 (2009) 7055 (https://doi.org/10.1016/j.chroma.2009.08.079)

K. Héberger, J. Chromatogr. A. 1158 (2007) 273 (https://doi.org/10.1016/j.chroma.2007.03.108)

R. Kaliszan, T. Ba̧czek, A. Buciński, B. Buszewski, M. Sztupecka, J. Sep. Sci. 26 (2003) 271 (https://doi.org/10.1002/jssc.200390033)

S. Khodadoust, J. Chromatogr. Sep. Tech. (2013) (https://doi.org/10.4172/2157-7064.1000149)

H. Noorizadeh, M. Noorizadeh, A. S. Mumtaz, J. Saudi Chem. Soc. 18(3) (2014) 183 (https://doi.org/10.1016/j.jscs.2011.06.007)

X. J. Yao, A. Panaye, J. P. Doucet, R. S. Zhang, H. F. Chen, M. C. Liu, Z. D. Hu, B. T. Fan, J. Chem. Inf. Comput. Sci. 44 (2004) 1257 (https://doi.org/10.1021/ci049965i)

J. – L. Wolfender, G. Marti, A. Thomas, S. Bertrand, J Chromatogr A. 1382 (2015) 136 (https://doi.org/10.1016/j.chroma.2014.10.091)

R. I. J. Amos, E. Tyteca, M. Talebi, P. R. Haddad, R. Szucs, J. W. Dolan, C. A. Pohl, J. Chem. Inf. Model. 57 (2017) 2754-2762 (https://doi.org/10.1021/acs.jcim.7b00346)

B. Pavlić, O. Bera, N. Teslić, S. Vidović, G. Parpinello, Z. Zeković, Ind. Crop. Prod. 120 (2018) 305 (https://doi.org/10.1016/j.indcrop.2018.04.044)

J. Dong, D. S. Cao, H. Y. Miao, S. Liu, B. C. Deng, Y. H. Yun, N. N. Wang, A. P. Lu, W. B. Zeng, A. F. Chen, J. Cheminform. 7 (2015) 60 (https://doi.org/10.1186/s13321-015-0109-z)

J. Dong, Z. J. Yao, M. Wen, M. F. Zhu, N. N. Wang, H. Y. Miao, A. P. Lu, W. B. Zeng, D. S. Cao, J. Cheminform. 8 (2016) 34 (https://doi.org/10.1186/s13321-016-0146-2)

H. Moriwaki, Y. S. Tian, N. Kawashita, T. Takagi, J. Cheminform. 10 (2018) 4 (https://doi.org/10.1186/s13321-018-0258-y)

C. W. Yap, J. Comput. Chem. 32 (2011) (https://doi.org/10.1002/jcc.21707)

Heuristic Lab (https://dev.heuristiclab.com/trac.fcgi/)

D. E. Goldberg, Genetic algorithms in search, optimisation and machine learning. Massachusetts: Addison-Wesley, Longman Publishing Co., Inc., Boston, USA, 1989. ISBN:0201157675

R. Leardi, R. Boggiaand, M. Terrile, J. Chemometr. 6 (1992) 267 (https://doi.org/10.1002/cem.1180060506)

STATISTICA, v. 10. StatSoft, Inc, Tulsa, OK, USA (2010) (http://www.statsoft.com)

X. Hu, Q. Weng, Remote Sens. Environ. 113 (2009) 2089 (https://doi.org/10.1016/j.rse.2009.05.014)

D. Wang, Y. Yuan, S. Duan, R. Liu, S. Gu, S. Zhao, L. Liu, J. Xu, Chemometr. Intell. Lab. 143, (2015) 7. (https://doi.org/10.1016/j.chemolab.2015.02.009)

P. Kojic, R. Omorjan, Chem. Eng. Res. Des. 125 (2018) 398 (https://doi.org/10.1016/j.cherd.2017.07.029)

Y. Yoon, G. Swales, T. M. Margavio, J. Oper. Res. Soc. 44 (1993) 51 (https://doi.org/10.1057/jors.1993.6)

M. Nekoei, M. Salimi, M. Dolatabadi, M. Mohammadhosseini, 2011. Monatsh. Chem. 142 (2011) 943. (https://doi.org/10.1007/s00706-011-0510-x)

M. Nekoei, M. Mohammadhosseini, E. Pourbasheer, Med. Chem. Res. 24 (2015) 3037 (https://doi.org/10.1007/s00044-015-1354-4)

S. Ahmad, M. M. Gromiha, J. Comput. Chem. 24 (2013) 1313 (https://doi.org/10.1002/jcc.540030212)

J. Aires-de-Sousa, M. C. Hemmer, J. Gasteiger, Anal. Chem. 74 (2002) 80 (https://doi.org/10.1021/ac010737m)

R. Todeschini, V. Consonni, Molecular descriptors for chemoinformatics, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, USA, 2009, p. 27. (ISBN: 978-3-527-31852-0)

Y. H. Zhao, M. H. Abraham, A. M. Zissimos, J. Org. Chem. 68 (2003) 368 (https://pubs.acs.org/doi/10.1021/jo034808o)

L. B. Kier, L. H. Hall, Molecular connectivity in chemistry and drug research, Academic Press, New York, USA, 1976, p. 1214. (https://doi.org/10.1002/jps.2600660852)

L. H. Hall, L. B. Kier, J. Chem. Inf. Comput. Sci. 35 (1995) 1039 (https://pubs.acs.org/doi/pdf/10.1021/ci00028a014)

L. B. Kier, L. H. Hall, J. Chem. Inf. Comput. Sci. 40 (2000) 792 (https://doi.org/10.1021/ci990135s)

M. Arsenović, L. Pezo, S. Stanković, Z. Radojević, Appl. Clay Sci. 115 (2015) 108 (https://doi.org/10.1016/j.clay.2015.07.030)

G. Moreau, P. Broto, Nouv. J. Chim. 4 (1980) 359

B. Hollas, MATCH-Commun. Math. Co. 45 (2002) 27 (http://match.pmf.kg.ac.rs/electronic_versions/Match45/match45_27-33.pdf)

P. A. Moran, Biometrika, 37 (1950) 17 (https://doi.org/10.1093/biomet/37.1-2.17)

R. C. Geary, The incorporated statistician 5 (1954) 115 (https://www.jstor.org/stable/pdf/2986645.pdf)

P. A. Azar, M. Nekoei, S. Riahi, M. R. Ganjali, K. Zare, J. Serb. Chem. Soc. 76 (2011) 891 (https://doi.org/10.2298/JSC100219076A).




DOI: https://doi.org/10.2298/JSC190522097P

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)