Aluminum/zirconium alloys obtained by Al underpotential deposition onto Zr from low temperature AlCl3+NaCl molten salts

Vesna S. Cvetković, Niko Jovićević, Nataša M Vukićević, Jovan N. Jovićević

Abstract


Contrary to the widely accepted hypothesis that it is not possible, alu­minum underpotential deposition (UPD) onto zirconium from a low tempera­ture (200, 250 and 300 °C) equimolar chloroaluminate melt was recorded. Fur­ther­more, it was shown that aluminum UPD facilitates alloy formation between the deposited aluminum monolayer and the zirconium substrate by interdif­fusion. The aluminum/zirconium alloys formed at temperatures substantially lower than those needed for thermal preparation of the same alloys were Al3Zr2 and Al3Zr. The experimental techniques linear sweep voltammetry, potential step, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction were used for the characterization of the obtained electrode surfaces.


Keywords


electrochemical metal deposition; chloroaluminate melt; solid state interdiffusion; intermetallics

Full Text:

PDF (4,401 kB)

References


M. Ueda, J. Solid State Electrochem. 21 (2017) 641 (http://dx.doi.org/10.1007/s10008-016-3428-8)

G. Garza-Elizondo, S. Alkahtani, A. Samuel, F. Samuel, in Light Metals 2014, J. Grandfield, Ed., Springer International Publishing, Cham, 2016, pp. 305–314 (http://dx.doi.org/10.1007/978-3-319-48144-9)

T. Knych, M. Piwowarska, P. Uliasz, Arch. Metall. Mater. 56 (2011) 685 (http://dx.doi.org/10.2478/v10172-011-0075-z)

M. Pokova, M. Cieslar, J. Lacaze, in Met. 2012 Conf. Proc., Brno, 2012, pp. 1149–1155

М. Pokova, M. Cieslar, P. Malek, in Met. 2013 Conf. Proc., Brno, Czech Republic, 2013

M. Ueda, T. Teshima, H. Matsushima, T. Ohtsuka, J. Solid State Electrochem. 19 (2015) 3485 (http://dx.doi.org/10.1007/s10008-015-2861-4)

T. Tsuda, C. L. Hussey, G. R. Stafford, O. Kongstein, J. Electrochem. Soc. 151 (2004) C447 (http://dx.doi.org/10.1149/1.1753231)

E. Budevski, G. Staikov, W. J. Lorenz, Electrochemical Phase Formation and Growth: an introduction to the initial stages of metal deposition, Wiley-VCH, New York, 1996

G. R. Stafford, C. L. Hussey, in Adv. Electrochem. Sci. Eng., R. C. Alkire, D. M. Kolb, Eds., Wiley-VCH, New York, Weinheim, 2001, pp. 275–348

A. Oveido, L. Reinaudi, S. G. Garcia, E. P. M. Levia, Underpotential Deposition: From fundamentals and theory to aplications at the nanoscale, Springer International Publishing, Cham, 2016 (http://dx.doi.org/10.1007/978-3-319-24394-8)

D. M. Kolb, M. Przasnyski, H. Gerischer, Electroanal. Chem. Interfacial Electrochem. 54 (1974) 25

H. Gerischer, D. M. Kolb, M. Przasnyski, Surf. Sci. 43 (1974) 662

D. M. Kolb, H. Gerischer, Surf. Sci. 51 (1975) 323

V. D. Jović, J. N. Jovićević, J. Appl. Electrochem. 19 (1989) 275 (http://dx.doi.org/10.1007/BF01062312)

B. Radovic, R. A. H. Edwards, V. S. Cvetković, J. N. Jovicevic, Kov. Mater. 48 (2010) 55 (http://dx.doi.org/10.4149/km_2010_1_55)

B. S. Radović, V. S. Cvetković, R. A. H. Edwards, J. N. Jovićević, Kov. Mater. 48 (2010) 159 (http://dx.doi.org/10.4149/km_2010_3_159)

B. S. Radović, V. S. Cvetković, R. A. H. Edwards, J. N. Jovićević, Int. J. Mater. Res. 102 (2011) 59 (http://dx.doi.org/10.3139/146.110443)

N. Jovićević, V. S. Cvetković, Ž. J. Kamberović, J. N. Jovićević, Int. J. Electrochem. Sci. 7 (2012) 10380

N. Jovićević, V. S. Cvetković, Ž. J. Kamberović, J. N. Jovićević, Metall. Mater. Trans., B: Process Metall. Mater. Process. Sci. 44 (2013) 106 (http://dx.doi.org/10.1007/s11663-012-9750-3)

N. Jovićević, V. S. Cvetković, Ž. Kamberović, T. S. Barudžija, Int. J. Electrochem. Sci. 10 (2015) 8959

V. S. Cvetković, L. Bjelica, N. M. Vukićević, J. N. Jovićević, Chem. Ind. Chem. Eng. Q. 21 (2015) 527 (http://dx.doi.org/10.2298/CICEQ141205009C)

M. Kawase, Y. Ito, J. Appl. Electrochem. 33 (2003) 785 (http://dx.doi.org/10.1023/A:1025513222091)

S. Shiomi, M. Miyake, T. Hirato, J. Electrochem. Soc. 159 (2012) D225 (http://dx.doi.org/10.1149/2.079204jes)

V. S. Cvetković, N. Jovićević, N. M. Vukićević, , in Proceedings of 49th Int. Oct. Conf. Min. Metall., N. Štrbac, I. Marković, L. Balanović, Eds., University of Belgrade, Technical Faculty in Bor, Bor, Serbia, 2017, pp. 241–244

J. Murray, A. Peruzzi, J. P. Abriata, J. Phase Equilibria 13 (1992) 277 (http://dx.doi.org/10.1007/BF02667556)

M. Alatalo, M. Weinert, R. E. Watson, Phys. Rev., B 57 (1998) R2009

A. Stakënas, L. Simanavièius, Chemistry (Vilnius) 12 (2001) 189

G. V. Kidson, G. D. Miller, J. Nucl. Mater. 12 (1964) 61 (http://dx.doi.org/10.1016/0022-3115(64)90108-4)

K. E. Knipling, D. C. Dunand, D. N. Seidman, Acta Mater. 56 (2008) 114 (http://dx.doi.org/10.1016/j.actamat.2007.09.004)

H. J. Fecht, G. Han, Z. Fu, W. L. Johnson, J. Appl. Phys. 67 (1990) 1744 (http://dx.doi.org/10.1063/1.345624)

M. N. Rittner, J. R. Weertman, J. A. Eastman, Acta Mater. 44 (1996) 1271 (http://dx.doi.org/10.1016/1359-6454(95)00303-7)

J. Ho, K. Lin, J. Appl. Phys. 75 (1994) 2434 (http://dx.doi.org/10.1063/1.356267)

I. L. Soroka, J. Vegelius, P. T. Korelis, A. Fallberg, S. M. Butorin, B. Hjörvarsson, J. Nucl. Mater. 401 (2010) 38 (http://dx.doi.org/10.1016/j.jnucmat.2010.03.016)

J. Vegelius, I. L. Soroka, P. T. Korelis, B. Hjörvarsson, S. M. Butorin, J. Phys. Condens. Matter 23 (2011) 265503 (http://dx.doi.org/10.1088/0953-8984/23/26/265503)

Q. Zhong, Z. Zhang, J. Zhu, Z. Wang, P. Jonnard, K. Guen, Y. Yuan, J.-M. André, H. Zhou, T. Huo, Appl. Phys. A 109 (2012) 133 (http://dx.doi.org/10.1007/s00339-012-7085-1)

Q. Zhong, Z. Zhang, S. Ma, R. Qi, J. Li, Z. Wang, P. Jonnard, K. Le Guen, J.-M. André, Appl. Surf. Sci. 279 (2013) 334 (http://dx.doi.org/10.1016/j.apsusc.2013.04.094).




DOI: https://doi.org/10.2298/JSC190620073C

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)