Preparation of FePO4·2H2O from LiFePO4 mixed with LiNixCoyMn1-x-yO2 waste material

Honghui Tang, Yanchao Qiao, Xi Dai, Feng Tan, Qiang Li

Abstract


A method for preparing battery-grade FePO42H2O from LiFePO4 and LiNixCoyMn1-x-yO2 mixed waste is proposed. The optimum leaching conditions included:  temperature of 50 oC, 3:1 liquid-solid ratio, 3.6 HCl/FePO4 2H2O mole ratio, 0.75 H2O2/FePO4 2H2O mole ratio, and 2 h reaction time. The solution obtained from the leaching waste material was diluted to a 1 M Fe concentration, then transferred to a 1 L beaker, where temperature, pH, complexing agent, ammonia addition rate and feeding mode were studied to determine their effects on the precipitation, particle size and morphology of FePO4 2H2O. High precipitation rate of Fe with low percentages of Al, Ni, Co, Mn in the FePO42H2O is achievable when precipitation is performed at a temperature of 85oC, pH of 2.0, and 20 g L-1 complexing agent. Furthermore, it was observed that slow addition of ammonia and a flow feeding method contributed to the production of FePO42H2O with small particle sizes and a flake morphology.


Keywords


spent materials; complexing; preparation; FePO4 2H2O

Full Text:

PDF (1,960 kB)

References


C. W. Sun, R. Shreyas, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc. 133 (2011) 2132 (https://doi.org/10.1021/ja1110464)

S. P. Wang, H. X. Yang, L. J. Feng, S. M. Sun, J. X. Guo, Y. Z. Yang, H. Y. Wei, J. Power Sources 233 (2013) 43 (https://doi.org/10.1016/j.jpowsour.2013.01.124)

Y. X. Gu, W. M. Liu, W. Lei, G. C. Li, Y. Yu, Crystengcomm. 15 (2013) 4865 (http://doi.org/10.1039/C3CE00072A)

Q. Wang, S. X. Deng, H. Wang, M. Xie, J. B. Liu, H. Yan, J. Alloys Compd. 553 (2013) 69 (https://doi.org/10.1016/j.jallcom.2012.11.041)

F. Y. Cheng, J. Liang, Z. L. Tao, J. Chen, Adv. Mater. 23 (2011) 1695 (https://doi.org/10.1002/adma.201003587)

B. Scrosati, J. Garche, J. Power Sources 195 (2009) 2419 (https://doi.org/10.1016/j.jpowsour.2009.11.048)

B. Scrosati, J. Hassoun, Y. K. Sun, Energy Environ. Sci. 4 (2011) 3287 (https://doi.org/10.1039/C1EE01388B)

Y. Zhang, Q. Y. Huo, P. P. Du, L. Z. Wang, A. Q. Zhang, Y. H. Song, Y. Lv, G. Y. Li, Synth. Met. 162 (2012) 1315 (https://doi.org/10.1016/j.synthmet.2012.04.025)

J. J. Wang, X. L. Sun, Energy Environ. Sci. 5 (2012) 5163 (https://doi.org/10.1039/C1EE01263K)

X. Wang, G. Gaustad, C. W. Babbitt, K. Richa, Resour. Conserv. Recy. 83 (2014) 53 (https://doi.org/10.1016/j.resconrec.2013.11.009)

J. Chen, Y. C. Zou, F. Zhang, Y. C. Zhang, F. F. Guo, G. D. Li, J. Alloys Compd. 563 (2013) 264 (https://doi.org/10.1016/j.jallcom.2013.02.131)

G. Q. Cai, K. Y. Fung, K. M. Ng, C. Wibowo, Ind. Eng. Chem. Res. 53 (2014) 18245 (https://doi.org/10.1021/ie5025326)

L. Han, D. L. He, A. J. Liu, D. M. Ma, Chin. J. Power Sources 38 (2014) 548 (https://doi.org/CNKI:SUN:DYJS.0.2014-03-051)

S. Barusseau, B. Beder, M. Broussely, F. Perton, J. Power Sources 54 (1995) 296 (https://doi.org/10.1016/0378-7753(94)02087-J)

P. G. Bruce, S. Bruno, T. Jean-Marie, Angew. Chem. Int. Ed. 47 (2008) 2930 (https://doi.org/10.1002/anie.200702505)

X. T. Jiang, P. Wang, L. H. Li, J. Yu, Y. X. Yin, F. Hou, Mater. Sci. Forum. 943 (2019) 141 (https://doi.org/10.4028/www.scientific.net/MSF.943.141)

N. Omar, M. A. Monem, Y. Firouz, J. Salminen, J. Smekens, O. Hegazy. H. Gaulous, G. Mulder, P. V. D. Bossche, T. Coosemans, J. V. Mierlo, Appl. Energy. 113 (2013) 1575 (https://doi.org/10.1016/j.apenergy.2013.09.003)

L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, Energy Environ. Sci. 4 (2010) 269 (https://doi.org/10.1039/c0ee00029a)

X. L. Li, J. Zhang, D. W. Song, J. S. Song, L.Q. Zhang, J. Power Sources 345 (2017) 78 (https://doi.org/10.1016/j.jpowsour.2017.01.118)

H. Tanaka, A. Yasukawa, K. Kandori, T. Ishikawa, Colloid Surface. A 204 (2002) 251 (https://doi.org/10.1016/S0927-7757(02)00005-5)

N. K. Mal, A. Bhaumik, M. Matsukata, M Fujiwara. Ind. Eng. Chem. Res. 45 (2006) 7748 (https://doi.org/10.1021/ie060609u)

D. C. Bian, Y. H. Sun, S. Li, Y. Tian, Z. H. Yang, X. M. Fan, W. X. Zhang, Electrochim. Acta. 190 (2015) 134 (https://doi.org/10.1016/j.electacta.2015.12.114)

Y. X. Yang, X. H. Zheng, H. B. Cao, C. L. Zhao, X. Lin, P. G. Ning, Y. Zhang, W. Jin, Z. Sun, Acs Sustain. Chem. Eng. 5 (2017) 9972 (https://doi.org/10.1021/acssuschemeng.7b01914)

B. Dong, G. Li, X. G. Yang, L. M. Chen, G. Z. Chen, Ultrason. Sonochem. 42 (2018) 452 (https://doi.org/10.1016/j.ultsonch.2017.12.008)

W. P. He, L. P. Xue, B. Gorczyca, J. Nan, Z. Shi, Sep. Purif. Technol. 190 (2018) 228 (https://doi.org/10.1016/j.seppur.2017.08.063)

A. Tamburini, G. Gagliano, G. Micale, A. Brucato, F. Scargiali, M. Ciofalo, Chem. Eng. Sci. 192 (2018) 161 (https://doi.org/10.1016/j.ces.2018.07.023)

D. M. Zheng, H. Z. Pan, L. P. Wu, J. C. Chen, J. H. Peng, Chin. J. Power Sources 39 (2015) 58 (https://doi.org/10.3969/j.issn.1002-087X.2015.01.017)

Z. M. Ma, R. G. Xiao, X. Liao, X. Ke, Mater. Rev. 32 (2018) 3325 (https://doi.org/10.11896/j.issn.1005-023X.2018.19.006)




DOI: https://doi.org/10.2298/JSC190916005T

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)