Preparation of FePO4x2H2O from LiFePO4 mixed with LiNixCoyMn1–x–yO2 waste material

Honghui Tang, Yanchao Qiao, Xi Dai, Feng Tan, Qiang Li

Abstract


A method for preparing battery grade FePO4×2H2O from LiFePO4 and LiNixCoyMn1-x-yO2 mixed waste is proposed. The optimum leaching con­ditions included: temperature of 50 °C, 3:1 liquid–solid mass ratio, 3.6 HCl/FePO4×2H2O mole ratio, 0.75 H2O2/FePO4×2H2O mole ratio, and 2 h reaction time. The solution obtained from the leaching waste material was diluted to a 1.0 M Fe concentration, then transferred to an 1 L beaker, where temperature, pH, complexing agent, ammonia addition rate and feeding mode were studied in order to determine their effects on the precipitation, particle size and mor­pho­logy of FePO4×2H2O. High precipitation rate of Fe with low percentages of Al, Ni, Co, Mn in the FePO4×2H2O is achievable when preci­pit­ation is per­formed at a temperature of 85 °C, pH of 2.0, and 20 g L-1 com­plexing agent. Furthermore, it was observed that a slow addition of ammonia and a flow feed­ing method contributed to the production of FePO4×2H2O, with small particle sizes and a flake morphology.


Keywords


spent materials; complexing; preparation; FePO4 2H2O

Full Text:

PDF (5,899 kB)

References


C. W. Sun, R. Shreyas, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc. 133 (2011) 2132 (https://doi.org/10.1021/ja1110464)

S. P. Wang, H. X. Yang, L. J. Feng, S. M. Sun, J. X. Guo, Y. Z. Yang, H. Y. Wei, J. Power Sources 233 (2013) 43 (https://doi.org/10.1016/j.jpowsour.2013.01.124)

Y. X. Gu, W. M. Liu, W. Lei, G. C. Li, Y. Yu, Crystengcomm 15 (2013) 4865 (http://doi.org/10.1039/C3CE00072A)

Q. Wang, S. X. Deng, H. Wang, M. Xie, J. B. Liu, H. Yan, J. Alloys Compd. 553 (2013) 69 (https://doi.org/10.1016/j.jallcom.2012.11.041)

F. Y. Cheng, J. Liang, Z. L. Tao, J. Chen, Adv. Mater. 23 (2011) 1695 (https://doi.org/10.1002/adma.201003587)

B. Scrosati, J. Garche, J. Power Sources 195 (2009) 2419 (https://doi.org/10.1016/j.jpowsour.2009.11.048)

B. Scrosati, J. Hassoun, Y. K. Sun, Energy Environ. Sci. 4 (2011) 3287 (https://doi.org/10.1039/C1EE01388B)

Y. Zhang, Q. Y. Huo, P. P. Du, L. Z. Wang, A. Q. Zhang, Y. H. Song, Y. Lv, G. Y. Li, Synth. Metals 162 (2012) 1315 (https://doi.org/10.1016/j.synthmet.2012.04.025)

J. J. Wang, X. L. Sun, Energy Environ. Sci. 5 (2012) 5163 (https://doi.org/10.1039/C1EE01263K)

X. Wang, G. Gaustad, C. W. Babbitt, K. Richa, Resour. Conserv. Recycl. 83 (2014) 53 (https://doi.org/10.1016/j.resconrec.2013.11.009)

J. Chen, Y. C. Zou, F. Zhang, Y. C. Zhang, F. F. Guo, G. D. Li, J. Alloys Compd. 563 (2013) 264 (https://doi.org/10.1016/j.jallcom.2013.02.131)

G. Q. Cai, K. Y. Fung, K. M. Ng, C. Wibowo, Ind. Eng. Chem. Res. 53 (2014) 18245 (https://doi.org/10.1021/ie5025326)

L. Han, D. L. He, A. J. Liu, D. M. Ma, Chin. J. Power Sources 38 (2014) 548 (https://doi.org/CNKI:SUN:DYJS.0.2014-03-051)

S. Barusseau, B. Beder, M. Broussely, F. Perton, J. Power Sources 54 (1995) 296 (https://doi.org/10.1016/0378-7753(94)02087-J)

P. G. Bruce, S. Bruno, T. Jean-Marie, Angew. Chem. Int. Ed. 47 (2008) 2930 (https://doi.org/10.1002/anie.200702505)

X. T. Jiang, P. Wang, L. H. Li, J. Yu, Y. X. Yin, F. Hou, Mater. Sci. Forum 943 (2019) 141 (https://doi.org/10.4028/www.scientific.net/MSF.943.141)

N. Omar, M. A. Monem, Y. Firouz, J. Salminen, J. Smekens, O. Hegazy. H. Gaulous, G. Mulder, P. V. D. Bossche, T. Coosemans, J. V. Mierlo, Appl. Energy 113 (2013) 1575 (https://doi.org/10.1016/j.apenergy.2013.09.003)

L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, Energy Environ. Sci. 4 (2010) 269 (https://doi.org/10.1039/c0ee00029a)

X. L. Li, J. Zhang, D. W. Song, J. S. Song, L.Q. Zhang, J. Power Sources 345 (2017) 78 (https://doi.org/10.1016/j.jpowsour.2017.01.118)

H. Tanaka, A. Yasukawa, K. Kandori, T. Ishikawa, Colloids Surfaces, A 204 (2002) 251 (https://doi.org/10.1016/S0927-7757(02)00005-5)

N. K. Mal, A. Bhaumik, M. Matsukata, M Fujiwara. Ind. Eng. Chem. Res. 45 (2006) 7748 (https://doi.org/10.1021/ie060609u)

D. C. Bian, Y. H. Sun, S. Li, Y. Tian, Z. H. Yang, X. M. Fan, W. X. Zhang, Electrochim. Acta 190 (2015) 134 (https://doi.org/10.1016/j.electacta.2015.12.114)

Y. X. Yang, X. H. Zheng, H. B. Cao, C. L. Zhao, X. Lin, P. G. Ning, Y. Zhang, W. Jin, Z. Sun, ACS Sustain. Chem. Eng. 5 (2017) 9972 (https://doi.org/10.1021/acssuschemeng.7b01914)

B. Dong, G. Li, X. G. Yang, L. M. Chen, G. Z. Chen, Ultrason. Sonochem. 42 (2018) 452 (https://doi.org/10.1016/j.ultsonch.2017.12.008)

W. P. He, L. P. Xue, B. Gorczyca, J. Nan, Z. Shi, Sep. Purif. Technol. 190 (2018) 228 (https://doi.org/10.1016/j.seppur.2017.08.063)

A. Tamburini, G. Gagliano, G. Micale, A. Brucato, F. Scargiali, M. Ciofalo, Chem. Eng. Sci. 192 (2018) 161 (https://doi.org/10.1016/j.ces.2018.07.023)

D. M. Zheng, H. Z. Pan, L. P. Wu, J. C. Chen, J. H. Peng, Chin. J. Power Sources 39 (2015) 58 (https://doi.org/10.3969/j.issn.1002-087X.2015.01.017)

Z. M. Ma, R. G. Xiao, X. Liao, X. Ke, Mater. Rev. 32 (2018) 3325 (https://doi.org/10.11896/j.issn.1005-023X.2018.19.006).




DOI: https://doi.org/10.2298/JSC190916005T

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)