The correlation of plasma protein binding and molecular properties of selected antifungal drugs

Jadranka V. Odović, Milkica A. Crevar Sakač, Zorica B. Vujić

Abstract


Antifungal agents are the group of drugs commonly prescribed in the treatment of fungal infections, which are widely spread among the global popu­lation. Their properties, such as absorption, distribution, metabolism, route of elimination or plasma protein binding (PPB), considerably influence their therapeutic success, while a number of the molecular physicochemical pro­perties of the drug notably influence all these processes. Lipophilicity (log P), molecular weight (Mw), volume (Vol), polar surface area (PSA) and solubility (log S) play important roles in drug absorption, penetration into tis­sues, distribution and route of elimination or the degree of plasma protein bind­ing. In this study, the relationships between these five molecular properties of eight antifungal drugs and their plasma protein binding data obtained from relevant literature were investigated. The Selected physicochemical molecular descriptors of the drug were calculated using software packages. The estab­lished relationships between PPB and PSA; Mw; Vol and log S were showed relatively poor correlation (r < 0.35). The best correlation was obtained for the relationship between PPB data and the lipophilicity descriptor X log P3 (correlation coefficient r = 0.55). In further investigation, multiple linear reg­res­sion analysis was applied. The best correlation was obtained with applic­at­ion of lipophilicity with polar surface area (r = 0.918) and volume (r = 0.916) or molecular weight (= 0.896) as independent variables.

Keywords


Antimycotics; therapeutic success; lipophilicity; polar surface area; molecular weight; volume; solubility

Full Text:

PDF (2,257 kB)

References


R. J. Perfect, Nat. Rev. Drug Discov. 16 (2017) 603 (https://doi:10.1038/nrd.2017.46)

www. pharmafactz.com,https://pharmafactz.com/medicinal–chemistry–of–antifungal–drugs/ (date accessed 19.09.2019)

J. E. Nett, D. R. Andes, Infect. Dis. Clin. North Am. 30 (2016) 51 (https://doi.org/10.1016/j.idc.2015.10.012)

M. A. Ghannoum, L.B. Rice, Clin. Microbiol. Rev. 12 (1999) 501 (https://doi:10.1128/CMR.12.4.501)

R. Bellmann, Curr. Clin. Pharmacol. 2 (2007) 37 (https://doi.org/10.2174/157488407779422311)

M. Schäfer–Korting, H. C. Korting, F. Amann, R. Peuser, A. Lukacs, Antimicrob. Agents. Chemother. 35 (1991) 2053 (https://doi:10.1128/AAC.35.10.2053)

H. J. Schmitt, J. Andrade, F. Edwards, Y. Niki, E. Bernard, D. Armstrong, Eur. J. Clin. Microbiol. Infect. Dis. 9) (1990) 832 (https://doi.org/10.1007/BF01967386)

N. S. Ryder, L. Frank, J. Med. Vet. Mycol. 30 (1992) 451 (https://doi.org/10.1080/02681219280000611)

D. Gonzalez, S. Schmidt, H. Derendorf, Clin. Microbiol. Rev. 26 (2013) 274 (https://doi.org/10.1128/CMR.00092–12)

M. Schäfer–Korting M. H. C. Korting, W. Rittler, W. Obermüller, Infection 23 (1995) 292 (https://doi.org/10.1007/BF01716289)

J. Kujawski, H. Popielarska, A. Myka, B. Drabinska, M. Bernard, CMST 18 (2012) 81 (https://doi.org/10.12921/cmst.2012.18.02.81–88)

T. L. Lemke, D. A. Williams, The Foye's Principles of Medicinal Chemistry, 7th ed., Lippincott Williams & Wilkins, Philadelphia, PA, 2013 (ISBN-13: 978-1-6091-3345-0)

A. C. Moffat, M. D. Osselton, B. Widdop, Clarke’s Analysis of Drugs and Poisons, 4th ed., Pharmaceutical Press, London, 2011 (ISBN 978-0-8536-9711-4)

www.drugbank.ca, https://www.drugbank.ca/interax/multi_search (date accessed 19.09.2019)

www.molinspiration.com, https://www.molinspiration.com/cgi-bin/properties (date accessed 19.09.2019)

www.vcclab.org, http://www.vcclab.org/lab/alogps/ (date accessed 19.09.2019)

Y. H. Zhao, J. Le, M. H. Abraham, A. Hersey, P. J. Eddershaw, C. N. Luscombe, D. Boutina, G. Beck, B. Sherbone, I. Cooper, J. A. Platts, J. Pharm. Sci. 90 (2001) 749 (https://doi.org/10.1002/jps.1031)

Y. H. Zhao, M. H. Abraham, J. Le, A. Hersey, C. N. Luscombe, G. Beck, B. Sherborne, I. Cooper, Pharm. Res. 19 (2002) 1446 (https://doi.org/10.1023/A:1020444330011)

R. Mannhold, G. I. Poda, I. V. Tetko, J. Pharm. Sci. 98 (2009) 861 (https://doi.org/10.1002/jps.21494 )

R. Estrada-Tejedor, N. Sabaté, F. Broto, S. Nonell, Afinidad 70 (2013) 250 (https://www.raco.cat/index.php/afinidad/article/view/273741/361891)

A.G. Asuero, A. Sayago, A.G. Gonzalez, Crit. Rev. Anal. Chem. 36 (2006) 41 (https://doi.org/10.1080/10408340500526766)

E. H. Kerns, L. Di, Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization. Elsevier, San Diego, CA, 2008 (ISBN: 978-0-1236-

-9520-8).




DOI: https://doi.org/10.2298/JSC190925125O

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)