Removal of Fe2+, Zn2+ and Mn2+ from the mining wastewater by lemon peel waste

Main Article Content

Slađana Meseldžija
Jelena Petrović
Antonije Onjia
Tatjana Volkov-Husović
Aleksandra Nešić
Nikola Vukelić

Abstract

This study is aimed to evaluate the possibility of lemon peel, as an agro-industrial waste, to remove Fe2+, Zn2+ and Mn2+ from single aqueous sol­u­ti­ons and mining wastewater. For this purpose, the influence of various para­me­ters: sorption time, initial pH solution, initial metal ion concentration and a dose of sorbent on the sorption process were studied in batch experiments. The experi­mental equilibrium data have been analysed utilizing linearized forms of Lang­muir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. The Langmuir isotherm provided the best theoretical correlation of the experi­men­tal equilibrium data for Fe2+, Zn2+ and Mn2+, with the maximum sorption cap­acities of 4.40, 5.03 and 4.52 mg g-1, respectively.  The percentage of targeted ions removal from single aqueous solutions was 92.9 % (Zn2+), 84.5 % (Fe2+) and 78.2 % (Mn2+). Regarding the sorption capability of lemon peel in mining wastewater, the maxi­mum removal of Fe2+, Zn2+ and Mn2+ from mining waste­water was 49.62, 33.97 and 9.11 %, respectively. In addition, the potential reusability of the lemon peel as sorbent was investigated through desorption study in 0.1M of CH3COO4, HCl and HNO3 solution. The highest rate of desorption was achieved in 0.1 M HCl solution, reached a value of 55.19 % for Mn2+ and 37.24 % for Zn2+, while for Fe2+ the highest value of 25.82 % was achieved in 0.1M HNO3 solution.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Meseldžija, J. Petrović, A. Onjia, T. Volkov-Husović, A. Nešić, and N. Vukelić, “Removal of Fe2+, Zn2+ and Mn2+ from the mining wastewater by lemon peel waste”, J. Serb. Chem. Soc., vol. 85, no. 10, pp. 1371–1382, Oct. 2020.
Section
Environmental Chemistry

References

E. Malkoc, J. Hazard. Mater. 137 (2006) 899 (https://doi.org/10.1016/j.jhazmat.2006.03.004)

S. E. Bailey, T. J. Olin, R. M. Bricka, D. D. Adrian, Water Res. 33 (1999) 2469 (https://doi.org/10.1016/S0043-1354(98)00475-8)

U. Kumar, Sci. Res. Essay 1 (2006) 33 (https://doi.org/10.5958/j.0974-4487.11.1.001)

T. Ahmad, M. Danish, J. Environ. Manage. 206 (2018) 330 (https://doi.org/10.1016/j.jenvman.2017.10.061)

Š. Abdić, M. Memić, E. Šabanović, J. Sulejmanović, S. Begić, Int. J. Environ. Sci. Technol. 15 (2018) 2511 (https://doi.org/10.1007/s13762-018-1645-7)

A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, Chem. Eng. J. 270 (2015) 244 (https://doi.org/10.1016/J.CEJ.2015.01.135)

C. K. Jain, D. S. Malik, A. K. Yadav, Environ. Process. (2016) 495 (https://doi.org/10.1007/s40710-016-0143-5)

D. A. Zema, P. S. Calabrò, A. Folino, V. Tamburino, G. Zappia, S. M. Zimbone, Waste Manage. 80 (2018) 252 (https://doi.org/10.1016/j.wasman.2018.09.024)

M. E. Magare, N. Sahu, G. S. Kanade, C. S. Chanotiya, S. T. Thul, Waste Biomass Valorization 11 (2020) 165 (https://doi.org/10.1007/s12649-018-0385-8)

D. Mamma, P. Christakopoulos, Waste Biomass Valorization 5 (2013) 529 (https://doi.org/10.1007/s12649-013-9250-y)

Y. N. Mata, M. L. Blázquez, A. Ballester, F. González, J. A. Muñoz, Chem. Eng. J. 150 (2009) 289 (https://doi.org/10.1016/j.cej.2009.01.001)

E. F. Lessa, A. L. Medina, A. S. Ribeiro, A. R. Fajardo, Arab. J. Chem. 13 (2020) 709 (https://doi.org/10.1016/j.arabjc.2017.07.011)

S. Meseldzija, J. Petrovic, A. Onjia, T. Volkov-Husovic, A. Nesic, N. Vukelic, J. Ind. Eng. Chem. 75 (2019) (https://doi.org/10.1016/j.jiec.2019.03.031)

APHA Standard Methods for the Examination of Water and Wastewater, 17th ed., American Public Health Association, Washington DC, 1989

S. S. Nielsen, Food Analysis Laboratory Manual, Springer International Publishing, Cham, 2017 (https://doi.org/10.1007/978-3-319-44127-6)

H. P. Boehm, Carbon N. Y. 32 (1994) 759 (https://doi.org/10.1016/0008-6223(94)90031-0)

S. L. Goertzen, K. D. Thériault, A. M. Oickle, A. C. Tarasuk, H. A. Andreas, Carbon N. Y. 48 (2010) 1252 (https://doi.org/10.1016/j.carbon.2009.11.050)

M. Masmoudi, S. Besbes, M. Chaabouni, C. Robert, Carbohydr. Polym. 74 (2008) 185 (https://doi.org/10.1016/j.carbpol.2008.02.003)

X. Li, Y. Tang, X. Cao, D. Lu, F. Luo, W. Shao, Colloids Surfaces, A 317 (2008) 512 (https://doi.org/10.1016/j.colsurfa.2007.11.031)

T. Bohli, I. Villaescusa, A. Ouedern, J. Chem. Eng. Process Technol. 04 (2013) (https://doi.org/10.4172/2157-7048.1000158)

K. Anitha, R. J. Rinu Isah, Int. J. Pure Appl. Math. 116 (2017) 91 (https://acadpubl.eu/jsi/2017-116-13-22/articles/13/16.pdf)

E. Bernard, A. Jimoh, Int. J. Eng. Appl. Sci. 4 (2013) 95 (http://eaas-journal.org/survey/userfiles/files/v4i212%20chemical%20engineering(1).pdf)

K. M. Al-Qahtani, J. Taibah Univ. Sci. 10 (2016) 700 (https://doi.org/10.1016/j.jtusci.2015.09.001)

M. Ngabura, S. A. Hussain, W. A. W. A. Ghani, M. S. Jami, Y. P. Tan, J. Environ. Chem. Eng. 6 (2018) 2528 (https://doi.org/10.1016/j.jece.2018.03.052)

S. L. Shrestha, Int. J. Appl. Sci. Biotechnol. 6 (2018) 137 (https://doi.org/10.3126/ijasbt.v6i2.20423)

M. R. Moghadam, N. Nasirizadeh, Z. Dashti, E. Babanezhad, Int. J. Ind. Chem. 4 (2013) 19 (https://doi.org/10.1186/2228-5547-4-19)

A. Ali, Environ. Nanotechnology, Monit. Manage. 7 (2017) 57 (https://doi.org/10.1016/j.enmm.2016.12.004)

M. Celus, C. Kyomugasho, Z. J. Kermani, K. Roggen, A. M. Van Loey, T. Grauwet, M. E. Hendrickx, Food Hydrocoll. 73 (2017) 101 (https://doi.org/10.1016/j.foodhyd.2017.06.021)

J. N. BeMiller, in Chem. Funct. Pectins, American Chemical Society, Washington DC, 1986, pp. 2–12 (https://doi.org/10.1021/bk-1986-0310.ch001)

M. Y. Khotimchenko, E. A. Kolenchenko, Y. S. Khotimchenko, J. Colloid Interface Sci. 323 (2008) 216 (https://doi.org/10.1016/j.jcis.2008.04.013)

K. Biswas, S. K. Saha, U. C. Ghosh, Ind. Eng. Chem. Res. 46 (2007) 5346 (https://doi.org/10.1021/ie061401b)

M. P. Tavlieva, S. D. Genieva, V. G. Georgieva, L. T. Vlaev, J. Mol. Liq. 211 (2015) 938 (https://doi.org/10.1016/j.molliq.2015.08.015)

Y. Zhang, J. Zhao, Z. Jiang, D. Shan, Y. Lu, Biomed Res. Int. 2014 (2014) 1 (https://doi.org/10.1155/2014/973095)

A. Ali, K. Saeed, Desalin. Water Treat. (2014) 37 (https://doi.org/10.1080/19443994.2013.876669)

C. Wu, C. Kuo, S. Guan, Pol. J. Environ. Stud. 24 (2015) 761 (https://doi.org/10.15244/pjoes/31222)

G. Annadurai, R. S. Juang, D. J. Lee, Water Sci. Technol. 47 (2003) 185 (https://doi.org/10.2166/wst.2003.0049)

P. A. Milani, K. B. Debs, G. Labuto, E. N. V. M. Carrilho, Environ. Sci. Pollut. Res. 25 (2018) 35895 (https://doi.org/10.1007/s11356-018-1615-0).

Most read articles by the same author(s)