Experimental study of the effect of single walled carbon nanotube/water nanofluid on the performance of a two-phase closed thermosyphon

Main Article Content

Mohammad Chehrazi
Bahareh Kamyab Moghadas


Thermosyphons are one of the most efficient heat exchanger appar­atus that are used extensively in different industries. One of the most common uses of this device is energy recovery, which is essential due to the energy crisis. Several parameters, such as geometric dimensions, type of working fluid and type of the body, affect the efficiency of a thermosyphon. In this work, the effect of type and concentration of single-walled carbon nanotube nanofluid (SWCNT/water) on the efficiency of heat transfer in a two-phase closed ther­mosyphon (TPCT) was investigated. For this purpose, a system with a two-
-phase closed thermosyphon was initially constructed. Then SWCNT/water nanofluids at 0.2, 0.5 and 1 % weight concentration were used as the working fluid in the thermosyphon system. The results of the current experiments showed that the addition of a nanofluid at any weight concentration and an increase in input power increases the performance of the system. In addition, the heat resistance of the TPCT was reduced when the level of SWCNT and input power increased. Hence, for the prepared nanofluid samples, the mini­mum thermal resistance was obtained at 1 wt. % SWCNT and 120 W. More­over, the Nusselt number increased with increasing input power and decreased with increasing concentration. In all experiments, all the prepared nanofluid samples had a significantly better thermal performance in comparison with pure water.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
M. Chehrazi and B. Kamyab Moghadas, “Experimental study of the effect of single walled carbon nanotube/water nanofluid on the performance of a two-phase closed thermosyphon ”, J. Serb. Chem. Soc., vol. 86, no. 3, pp. 313–326, Mar. 2021.
Chemical Engineering


M. Ramezanizadeh, M. A. Nazari, M. H. Ahmadi, E. Açıkkalp, J. Mol. Liq. 272 (2018) 395 (https://doi.org/10.1016/j.molliq.2018.09.101)

H. Karami, S. Papari-Zare, M. Shanbedi, H. Eshghi, A. Dashtbozorg, A. Akbari, C. B. Teng, Int. Commun. Heat Mass 108 (2019) 104302 (https://doi.org/10.1016/j.icheatmasstransfer.2019.104302)

A. O. Borode, N.A. Ahmed, P. A. Olubambi, Nano-Struct. Nano-Objects 20 (2019) 100394 (https://doi.org/10.1016/j.nanoso.2019.100394)

E. Živković, S. Kabelac, S. Šerbanović, J. Serb. Chem. Soc. 74 (2009) 427 (https://doi.org/10.2298/JSC0904427Z)

S. U. Choi, J. A. Eastman, International Mechanical Engineering Congress and Exposition, in Enhancing Thermal Conductivity of Fluids with Nanoparticles, San Francisco, CA, 1995, p. 12

H. U. Kang, S. H. Kim, J. M. Oh, Exp. Heat Transf. 19 (2006) 181 (https://doi.org/10.1080/08916150600619281)

L. Godson, B. Raja, D. M. Lal, S. Wongwises, Exp. Heat Transf. 23 (2010) 317 (https://doi.org/10.1080/08916150903564796)

H. R. Goshayeshi, M. R. Safaei, M. Goodarzi, M. Dahari, Powder Technol. 301 (2016) 1218 (https://doi.org/10.1016/j.powtec.2016.08.007)

S. Zeinali Heris, M. N. Esfahani, G. Etemad, J. Enhanc. Heat Transf. 13 (2006) 279 (https://doi.org/10.1615/JEnhHeatTransf.v13.i4.10)

S. Zeinali Heris, G. Etemad, M. Nasr Esfahany, Int. Commun. Heat Mass 33 (2006) 529 (https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005)

S. Zeinali Heris, M. Nasr Esfahany, G. Etemad, Int. J. Heat Fluid Flow 28 (2007) 203 (https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001)

S. H. Noie, S. Zeinali Heris, M. Kahani, S. M. Nowee, Int. J. Heat Fluid Flow 30 (2009) 700 (https://doi.org/10.1016/j.ijheatfluidflow.2009.03.001)

S. W. Kang, W. C. Wei, S. H. Tsai, S. Y. Yang, Appl. Therm. Eng. 26 (2006) 2377 (https://doi.org/10.1016/j.applthermaleng.2006.02.020)

H. J. Jia, L. Jia, Z. Tau, J. Тherm. Sci. 22 (2013) 484 (https://doi.org/10.1021/ma302119t)

Q. Xu, L. Liu, J. Feng, L. Qiao, Ch. Yu, W. Shi, Ch. Ding, Y. Zang, Ch. Chang, Y. Xiong, Y. Ding, Int. J. Heat Mass Transf. 149 (2020) 119189 (https://doi.org/10.1007/s11630-020-1273-7)

S. Das, A. Giri, S. Samanta, Energy Source, A (2020) 1 (https://doi.org/10.1080/15567036.2020.1727998)

S. Berber, Y. K. Kwon, D. Tomanek, Phys. Rev. Lett. 84 (2000) 4613 (https://doi.org/10.1103/PhysRevLett.84.4613)

Z. H. Liu, X. F. Yang, G. S. Wang, G. L. Guo, Int. J. Heat Mass Transf. 53 (2010) 1914 (https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.065)

S. U. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, Appl. Phys. Lett. 79 (2001) 2252 (https://doi.org/10.1063/1.1408272)

M. Shanbedi, S. Zeinali Heris, M. Baniadam, A. Amiri, Exp. Heat Transf. 26 (2013) 26 (https://doi.org/10.1080/08916152.2011.631078)

M. T. Pettes, L. Shi, Adv. Funct. Mater. 19 (2009) 3918 (https://doi.org/10.1002/adfm.200900932)

D. Wen, Y. Ding, J. Thermophys. Heat Transf. 18 (2004) 481 (https://doi.org/10.2514/1.9934)

Y. Yang, E. A. Grulke, Z. G. Zhang, G. Wu, J. Appl. Phys. 99 (2006) 114307. (https://doi.org/10.1063/1.2193161)

S. H. Noie, Appl. Thermal Eng. 25 (2005) 495 (https://doi.org/10.1016/j.applthermaleng.2004.06.019)

S. Maki, T. Tagawa, H. Ozoe, J. Heat Transf. 124 (2002) 667 (https://doi.org/10.1115/1.1482082)

H. Salehi, S. Zeinali Heris, S. H. Noie, J. Enhanced Heat Transf. 18 (2011) 261 (https://doi.org/10.1615/JEnhHeatTransf.v18.i3.70)

Q. Z. Xue, Physica B 368 (2005) 302 (https://doi.org/10.1016/j.physb.2005.07.024)

S. Khandekar, Y. M. Joshi, B. Mehta, Int. J. Ther. Sci. 47 (2008) 659 (https://doi.org/10.1016/j.ijthermalsci.2007.06.005)

J. D. Holman, Experimental Methods for Engineers, 5th ed., Ch. 3, McGraw-Hill, New York, 1989

H. Sardarabadi, S. Z. Heris, A. Ahmadpour, M. Passandideh-Fard, Energy Conv. Manage. 188 (2019) 321 (https://doi.org/10.1016/j.enconman.2019.03.070)

M. M. Sarafraz, I. Tlili, Z. Tian, M. Bakouri, M. R. Safaei, Physica A 534 (2019) 122146 (https://doi.org/10.1016/j.physa.2019.122146)

C. Li, Z. Wang, P. Wang, Y. Peles, N. Koratkar, G. P. Peterson, Small 4 (2008) 1084 (https://doi.org/10.1002/smll.200700991)

S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, Int. J. Heat Mass Transf. 50 (2007) 4105 (https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002).