Sodium ion chemosensor of 3-oxo-3H-benzo[f]chromene-2-carboxylic acid: An experimental and computational study Scientific paper

Main Article Content

Jamaludin Al Anshori
https://orcid.org/0000-0003-4249-1621
Andi Rahim
Ajar Faflul Abror
Ika Wiani Hidayat
Tri Mayanti
Muhammad Yusuf
Juliandri Juliandri
https://orcid.org/0000-0002-9381-8359
Ace Tatang Hidayat

Abstract

A fluorescence compound with the typical skeleton of benzocoum­arin was synthesized and its interaction with various metal ions was evaluated. The synthesis was performed via Knoevenagel condensation whereas identific­ation of the product was accomplished by various spectroscopic tech­niques. The chemosensor test against representative metal ions was monitored by fluore­cence spectrophotometry. A density functional theory calculation (DFT, functional/basis set; M06/6-31G (d, p)) was also performed to clarify the expe­rimental results and to confirm the mechanism of interaction. 3-Oxo-3H-benzo­[f]chromene-2-carboxylic acid 1 was obtained as a yellow solid in 60 % chem­ical yield. Melting point; 235.6–236.7 °C and λmax UV/Vis, λem and Stokes shift (MeOH, nm) of 374, 445 and 71 nm, respectively. The structure of the compound was identified based on spectroscopic data and literature com­par­ison. Compound 1 exhibited a chelation quenched fluorescence (CHQF) phen­menon selectively toward the Na+, with a binding stoichiometry (1:2) and LoD and LoQ of 0.14 and 0.48 mg/L, respectively. Based on DFT calcul­ations, compound 1 chelated Na+ through mechanism of oxidative (1:1 equivalent) and reductive (2:1 equivalent) photoinduced electron transfer (PET), corres­pond­ingly.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Al Anshori, “Sodium ion chemosensor of 3-oxo-3H-benzo[f]chromene-2-carboxylic acid: An experimental and computational study: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 10, pp. 971–982, Sep. 2021.
Section
Analytical Chemistry

References

C. Zhou, N. Xiao, Y. Li, Can. J. Chem. 92 (2014) 1092 (https://dx.doi.org/10.1139/cjc-2014-0011)

J. S. Kim, D. T. Quang, Chem. Rev. 107 (2007) 3780 (https://dx.doi.org/10.1021/cr068046j)

H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, J. Yoon, Chem. Soc. Rev. 37 (2008) 1465 (http://dx.doi.org/10.1039/B802497A)

X. Chen, T. Pradhan, F. Wang, J. S. Kim, J. Yoon, Chem. Rev. 112 (2012) 1910 (https://doi.org/10.1021/cr200201z)

J. F. Clark, D. L. Clark, G. D. Whitener, N. C. Schroeder, S. H. Strauss, Environ. Sci. Technol. 30 (1996) 3124 (https://dx.doi.org/10.1021/es960394n)

M. P. Anderson, R. J. Gregory, S. Thompson, D. W. Souza, S. Paul, R. C. Mulligan, A. E. Smith, M. J. Welsh, Science 80 253 (1991) 202 (https://dx.doi.org/10.1126/science.1712984)

Y. Yamini, N. Alizadeh, M. Shamsipur, Anal. Chim. Acta 355 (1997) 69 (https://dx.doi.org/10.1016/S0003-2670(97)81613-3)

C.F. Harrington, S.A. Merson, T. M. D. DSilva, Anal. Chim. Acta 505 (2004) 247 (https://dx.doi.org/10.1016/j.aca.2003.10.046)

S. L. C. Ferreira, A. S. Queiroz, M. S. Fernandes, H. C. dos Santos, Spectrochim. Acta, B 57 (2002) 1939–1950 (https://dx.doi.org/10.1016/S0584-8547(02)00160-X)

J. C. Yu, J. M. Lo, C. M. Wai, Anal. Chim. Acta 154 (1983) 307 (https://dx.doi.org/10.1016/0003-2670(83)80032-4)

A. Ali, H. Shen, X. Yin, Anal. Chim. Acta 369 (1998) 215 (https://doi.org/10.1016/S0003-2670(98)00252-9)

A. Bobrowski, K. Nowak, J. Zarebski, Anal. Bioanal. Chem. 382 (2005) 1691 (https://dx.doi.org/10.1007/s00216-005-3313-2)

S. Karthikeyan, V. K. Gupta, R. Boopathy, A. Titus, G. Sekaran, J. Mol. Liq. 173 (2012) 153 (https://dx.doi.org/10.1016/j.molliq.2012.06.022)

V. K. Gupta, S. Kumar, R. Singh, L. P. Singh, S. K. Shoora, B. Sethi, J. Mol. Liq. 195 (2014) 65 (https://dx.doi.org/10.1016/j.molliq.2014.02.001)

G. Dimeski, T. Badrick, A. S. John, Clin. Chim. Acta 411 (2010) 309 (https://dx.doi.org/10.1016/j.cca.2009.12.005)

N. Mergu, A. K. Singh, V. K. Gupta, Sensors 15 (2015) 9097 (https://doi.org/10.3390/s150409097)

K. Yamada, Y. Nomura, D. Citterio, N. Iwasawa, K. Suzuki, J. Am. Chem. Soc. 127 (2005) 6956 (https://dx.doi.org/10.1021/ja042414o)

Y. M. Poronik, G. Clermont, M. Blanchard-Desce, D. T. Gryko, J. Org. Chem. 78 (2013) 11721 (https://dx.doi.org/10.1021/jo401653t)

T. Gunnlaugsson, M. Nieuwenhuyzen, L. Richard, V. Thoss, J. Chem. Soc. Perkin Trans. 2 (2002) 141 (http://dx.doi.org/10.1039/B106474F)

P. Nandhikonda, M. P. Begaye, M. D. Heagy, Tetrahedron Lett. 50 (2009) 2459 (https://dx.doi.org/10.1016/j.tetlet.2009.02.197)

W. Zhou, J. Ding, J. Liu, Nucleic Acids Res. 44 (2016) 10377 (https://dx.doi.org/10.1093/nar/gkw845)

M. Taki, H. Ogasawara, H. Osaki, A. Fukazawa, Y. Sato, K. Ogasawara, T. Higashiyama, S. Yamaguchi, Chem. Commun. 51 (2015) 11880 (https://dx.doi.org/10.1039/c5cc03547c)

I. Leray, J.-P. Lefevre, J.-F. Delouis, J. Delaire, B. Valeur, Chem. Eur. J. 7 (2001) 4590 (https://doi.org/10.1002/1521-3765(20011105)7:21%3C4590::AID-CHEM4590%3E3.0.CO;2-A)

N. A. Al-Masoudi, N. J. Al-Salihi, Y. A. Marich, J. Fluoresc. 25 (2015) 1847 (https://dx.doi.org/10.1007/s10895-015-1677-z)

J. Al Anshori, D. S. Rahayu, A. T. Hidayat, I. W. Hidayat, A. Zainuddin, Res. J. Chem. Environ. 22 (2018) 91 (https://worldresearchersassociations.com/SpecialIssueAugust2018.aspx)

M. Tasior, D. Kim, S. Singha, M. Krzeszewski, K. H. Ahn, D. T. Gryko, J. Mater. Chem. C 3 (2015) 1421 (https://dx.doi.org/10.1039/C4TC02665A)

Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford, CT, 2016 (https://gaussian.com)

Y. Zhao, D. G. Truhlar, Theor. Chem. Accounts 120 (2008) 215 (https://dx.doi.org/10.1007/s00214-007-0310-x)

J. M. Xiao, L. Feng, L. S. Zhou, H. Z. Gao, Y. L. Zhang, K. W. Yang, Eur. J. Med. Chem. 59 (2013) 150 (https://dx.doi.org/10.1016/j.ejmech.2012.11.019)

J. Piao, J. Lv, X. Zhou, T. Zhao, X. Wu, Spectrochim. Acta, A 128 (2014) 475 (https://dx.doi.org/10.1016/j.saa.2014.03.002)

M. Amirnasr, R. Sadeghi Erami, S. Meghdadi, Sensors Actuators, B 233 (2016) 355 (https://dx.doi.org/10.1016/j.snb.2016.04.077)

S. Goswami, S. Chakraborty, S. Paul, S. Halder, S. Panja, S. K. Mukhopadhyay, Org. Biomol. Chem. 12 (2014) 3037 (https://dx.doi.org/10.1039/C4OB00067F)

X. B. Fu, X. F. Wang, J. N. Chen, D. W. Wu, T. Li, X. C. Shen, J. K. Qin, Molecules 20 (2015) 18565 (https://doi.org/10.3390/molecules201018565)

W. Zhao, L. Pan, W. Bian, J. Wang, Chem. Phys. Chem. 9 (2008) 1593 (https://dx.doi.org/10.1002/cphc.200800131)

X. Liu, J. M. Cole, K. S. Low, J. Phys. Chem., C 117 (2013) 14731 (https://dx.doi.org/10.1021/jp310397z)

R. Wang, F. Zhang, J. Mater. Chem., B 2 (2014) 2422 (https://dx.doi.org/10.1039/C3TB21447H)

T. G. Phan, A. Bullen, Immunol. Cell Biol. 88 (2010) 438 (https://doi.org/10.1038/icb.2009.116)

B. P. Joshi, T. D. Wang, Cancers 2 (2010) 1251 (https://dx.doi.org/10.3390/cancers2021251)

J. Rao, A. Dragulescu-Andrasi, H. Yao, Curr. Opin. Biotechnol. 18 (2007) 17 (https://dx.doi.org/10.1016/j.copbio.2007.01.003)

R. Macgregor, G. Weber, Ann. N.Y. Acad. Sci. 366 (1981) 140 (https://doi.org/10.1111/j.1749-6632.1981.tb20751.x)

A. T. Afaneh, G. Schreckenbach, J. Phys. Chem., A 119 (2015) 8106 (https://dx.doi.org/10.1021/acs.jpca.5b04691)

N. Mergu, M. Kim, Y.-A. Son, Spectrochim. Acta, A 188 (2018) 571 (https://doi.org/10.1016/j.saa.2017.07.047)

T. Keawwangchai, N. Morakot, B. Wanno, J. Mol. Model. 19 (2013) 1435 (https://dx.doi.org/10.1007/s00894-012-1698-3).