QTAIM investigation of decorated graphyne and boron nitride for Li detection

Maryam Dehestani, Leila Zeidabadinejad, Sedigheh Pourestarabadi

Abstract


Received 25 July, revised 5 November, accepted 7 November 2016)

Abstract: The interactions between thirteen Li atoms and graphyne (GY) and boron nitride (BN–yne) has been investigated by density functional theory. The electronic and structural properties of the interaction between hollow sites of GY and BN–yne with Li atoms have been unveiled by means of the atoms in molecules (AIM) framework. Theoretical understanding of the interaction between Li atoms and extended carbon–based network structures are crucial for developing new materials. Here, we report calculations to explore the impact of Li decoration on the GY and BN–yne. We predict that Li decoration increases density of state these sheets. Owing to strong interactions between Li and the GY and BN–yne, dramatic changes in the electronic properties of the sheets together with large band gap variations have been observed. The present study sheds a deep insight into the chemical properties of the novel carbon–based two dimentional (2D) structures beyond the graphene sheet.


Keywords


graphyne; BN–yne; chemical property; density of state; DFT

Full Text:

PDF (1,525 kB)

References


K. S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. A. Dubonos, I. Grigorieva, A. Firsov, Science 306 (2004) 666

A. K. Geim, K.S. Novoselov, Nat. Mater 6 (2007) 183

A. Hirsch, Nat. Mater. 9 (2010) 868

R. J. Lagow, J. J. Kampa, H.-C. Wei, S. L. Battle, J. W. Genge, D. A. Laude, C. J. Harper, R. Bau, R. C. Stevens, J. F. Haw, Science 267 (1995) 362

W. A. Chalifoux, R. R. Tykwinski, Nat. Chem. 2 (2010) 967

S. Schrettl, C. Stefaniu, C. Schwieger, G. Pasche, E. Oveisi, Y. Fontana, Nat. Chem. 6 (2014) 468

Y. Li, L. Xu, H. Liu, Y. Li, Chem. Soc. Rev. 43 (2014) 2572

A. Ivanovskii, Prog. Solid State Chem. 41 (2013) 1

R. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 87 (1987) 6687

N. Narita, S. Nagai, S. Suzuki, K. Nakao, Phys. Rev., B 58 (1998) 11009

M. M. Haley, Pure Appl. Chem. 80 (2008) 519

M. Long, L. Tang, D. Wang, Y. Li, Z. Shuai, ACS. Nano 5 (2011) 2593

J. Zhou, K. Lv, Q. Wang, X. Chen, Q. Sun, P. Jena, J. Chem. Phys. 134 (2011) 174701

H. Zhang, M. Zhao, X. He, Z. Wang, X. Zhang, X. Liu, J. Phys. Chem., C 115 (2011) 8845

J. Kang, J. Li, F. Wu, S.-S. Li, J.-B. Xia, J. Phys. Chem., C 115 (2011) 20466

M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Wallingford, CT. 19 (2009) 227

R. F.W. Bader. Atoms in molecules. Wiley Online Library, 1990.

R. Bader, McMaster University, Hamilton, ON. (2000)

K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 20 (1952) 722

K. Fukui, T. Yonezawa, C. Nagata, H. Shingu, J. Chem. Phys. 22 (1954) 1433

A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899

S. M. Sze, K. K. Ng. Physics of semiconductor devices. John Wiley & Sons, 2006.

R. F. Bader, Atoms in molecules, Wiley Online Library, 1990.

E. E. Hodgkin, W.G. Richards, Int. J. Quant. Chem. 32 (1987) 105.




DOI: http://dx.doi.org/10.2298/JSC160725012D

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.970 (120 of 163 journals)
5 Year Impact Factor 0.997 (111 of 163 journals)