Copper ions biosorption onto bean shells: Kinetics, equilibrium and process optimization studies Scientific paper

Main Article Content

Miljan Marković
https://orcid.org/0000-0002-4734-1481
Milan Gorgievski
https://orcid.org/0000-0002-9899-719X
Nada Štrbac
https://orcid.org/0000-0003-4836-1350
Kristina Božinović
https://orcid.org/0000-0002-9834-448X
Vesna Grekulović
https://orcid.org/0000-0001-6871-4016
Aleksandra Mitovski
Milica Zdravković
https://orcid.org/0000-0001-9488-9151

Abstract

The removal of copper ions from aqueous solutions using bean shells as an adsorbent is presented in this paper. The influence of the solution pH on the biosorption capacity was investigated. The biosorption capacity increased with the increase in the solution pH. The pseudo-second order kinetic model showed the best agreement with the analysed experimental data, indicating that chemisorption could be a possible way of binding the copper ions to the surface of the bean shells. The Langmuir isotherm model best fitted the analysed iso­therm data. The SEM-EDS analysis was performed before and after the bio­sorption process. The change in the morphology of the sample after the bio­sorption process was evident, whereby K, Mg, Si and Ca were possibly exchanged with copper ions. Response surface methodology (RSM) based on the Box–Behnken design (BBD) was used to optimize the biosorption process, with the selected factors: the solution pH, initial copper ions concentration and contact time. The optimum biosorption conditions were determined to be: pH 3–4, initial copper ions concentration, 100 mg dm-3, and contact time, 10–30 min.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Marković, “Copper ions biosorption onto bean shells: Kinetics, equilibrium and process optimization studies: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 9, pp. 921–935, Sep. 2023.
Section
Environmental Chemistry

Funding data

References

F. Shafique, Q. Ali, A. Malik, Biol. Clin. Sci. Res. J. 1 (2020) e027 (https://doi.org/10.54112/bcsrj.v2020i1.27)

N. Agasti, CRGSC 4 ( 2021), 100088 (https://doi.org/10.1016/j.crgsc.2021.100088)

D. Lakhterwal, IJERD 4 (2014) 41 (https://www.ripublication.com/ijerd_spl/ijerdv4n1spl_08.pdf)

S. K. Gunatilake, JMESS 1 (2015) 12 (http://www.jmess.org/wp-content/uploads/2015/11/JMESSP13420004.pdf)

C. Tu, Y. Liu, J. Wei, L. Li, K. G. Sheckel, Y. Luo, Environ. Sci. Pollut. Res. Int. 25 (2018) 24965 (https://doi.org/10.1007/s11356-018-2563-4)

M. Marković, M. Gorgievski, D. Božić, V. Stanković, M. Cakić, V. Grekulović, K. Božinović, Rev. Chim. 72 (2021),118 (https://doi.org/10.37358/RC.21.4.8462)

S. Schiewer, B. Volesky, Environ. Sci. Technol. 31 (1997) 2478 (https://doi.org/10.1021/es00012a024)

U. Farooq, J. Kozinski, M. Khan, M. Athar, Bioresour. Technol. 101 (2010) 5043 (https://doi.org/10.1016/j.biortech.2010.02.030)

B. Nagy, C. Manzatu, A. Maicaneanu, C. Indolean, B. T. Lucian, C. Majdik, Arab. J. Chem. 10 (2017) 3569 (https://doi.org/10.1016/j.arabjc.2014.03.004)

S. Lagergren, Sven. Vetenskapsakad. Handingarl 241 (1898) 1

N. T. Coleman, A. C. McClung, D. P. Moore, Science 123 (1956) 330

S. M. Mousa, N. S. Ammar, H. A. Ibrahim, J. Saudi Chem. Soc. 20 (2016) 357 (https://doi.org/10.1016/j.jscs.2014.12.006)

R. S. Juang, M. L. Chen, Ind. Eng. Chem. Res. 36 (1997) 813 (http://dx.doi.org/10.1021/ie960351f)

S. A. Sadeek, N. A. Negm, H. H. Hefni, M. A. Abdel Wahab, Int. J. Biol. Macromol. 81 (2005) 400 (https://doi.org/10.1016/j.ijbiomac.2015.08.031)

R. Han, J. Zhang, W. Zou, J. Shi, H. Liu, J. Hazard. Mater. 125 (2005) 266 (https://doi.org/10.1016/j.jhazmat.2005.05.031)

X. Chen, Information 6 (2015) 14 (https://doi.org/10.3390/info6010014)

G. Murithi, C. O. Onindo, G. K. Muthakia, Bull. Chem. Soc. Ethiop. 26 (2012) 181 (http://dx.doi.org/10.4314/bcse.v26i2.3)

M. Gorgievski, D. Božić, V. Stanković, N. Štrbac, S. Šerbula, Ecol. Eng. 58 (2013) 113 (https://doi.org/10.1016/j.ecoleng.2013.06.025)

D. Božić, V. Stanković, M. Gorgievski, G. Bogdanović, R. Kovačević, J. Hazard. Mater. 171 (2009) 684 (https://doi.org/10.1016/j.jhazmat.2009.06.055)

R. Kumar, H. J. Kumar, M. C. Vishwakarma, H. Sharma, K. S. Joshi, N. S. Bhandari, Environ. Nanotechnol. Monit. Manage. 19 (2023) 100775 (https://doi.org/10.1016/j.enmm.2022.100775)

N. Ilavarasan, Y. S. Sirinivasa Rao, R: Gokulan, A. Aravindan, Glob. Nest J. 25 (2023) 47 (https://doi.org/10.30955/gnj.004496)

M. A. Fawzy, H. M. Al-Yasi, T. M. Galal, R. Z. Hamza, T. G. Abdelkader, E. F. Ali, S. H. A. Hassan, Sci. Rep. 12 (2022) 8583 (https://doi.org/10.1038/s41598-022-12233-1)

C. Sireesha, R. Subha, S. Sumithra, RASAYAN J. Chem. 15 (2022) 2267 (http://doi.org/10.31788/RJC.2022.1548035)

A. Tahir, M. Salman, Desalination Water Treat. 270 (2022) 127 (https://doi.org/10.5004/dwt.2022.28775)

G. F. Coelho, A. C. Goncalves, C. R. Teixeira Tarley, J. Casarin, N. Nacke, M. A. Fancziskowski, Ecol. Eng. 73 (2014) 514 (https://doi.org/10.1016/j.ecoleng.2014.09.103)

A. Choinska-Pulit, J. Sobolczyk-Bednarek, W. Laba, Ecotoxicol. Environ. Saf. 149 (2018) 275 (https://doi.org/10.1016/j.ecoenv.2017.12.008)

H. Turkyilmaz, T. Kartal, S. Yigitarslan Yildiz, J. Environ. Health Sci. Eng. 12 (2014) (https://doi.org/10.1186/2052-336X-12-5).