Investigation of structural, dynamics, and dielectric properties of an aqueous potassium fluoride system at various concentrations by molecular dynamics simulations

Main Article Content

Ayoub Lahmidi
https://orcid.org/0000-0002-9896-6625
Sanaa Rabii
Abdelkbir Errougui
https://orcid.org/0000-0001-9972-7522
Samir Chtita
https://orcid.org/0000-0003-2344-5101
Mhammed El Kouali
https://orcid.org/0000-0002-7036-450X
Mohammed Talbi

Abstract

Potassium-ion-based batteries have emerged as promising alternatives to traditional lithium-ion batteries for energy storage systems due to their affordability, wide accessibility, and comparable chemical characteristics to lithium. This study employs molecular dynamics simulations to explore the physical phenomena of potassium fluoride in aqueous solutions. The interatomic interactions were defined using the OPLS-AA force field, while the SPC/E water model and ions were represented as charged Lennard-Jones particles. The simulations were conducted across concentrations ranging from 0.1 to 1.0 mol kg-1. The insights derived from this investigation provide valuable understanding into the behavior of KF electrolytes and their potential utility in energy storage systems. A comprehensive comprehension of the impact of KF electrolyte concentration on structural, dynamic, and dielectric properties is pivotal for the design and optimization of potassium-ion batteries, as well as other electrochemical devices leveraging KF-based electrolytes. This research significantly contributes to the ongoing endeavors aimed at developing efficient and economically viable energy storage solutions that transcend the confines of traditional lithium-ion batteries.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Lahmidi, S. Rabii, A. Errougui, S. Chtita, M. El Kouali, and M. Talbi, “Investigation of structural, dynamics, and dielectric properties of an aqueous potassium fluoride system at various concentrations by molecular dynamics simulations”, J. Serb. Chem. Soc., Jan. 2024.
Section
Physical Chemistry

References

A. Tomaszewska, Z. Chu, X. Feng, S. O’Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, & B. Wu, eTransportation 1 (2019) 100011 (https://doi.org/10.1016/j.etran.2019.100011)

Y. Kim, W. M. Seong, & A. Manthiram, Energy Storage Materials 34 (2021) 250–259 (https://doi.org/10.1016/j.ensm.2020.09.020)

K. Beltrop, S. Beuker, A. Heckmann, M. Winter, & T. Placke, Energy Environ. Sci. 10 (2017) 2090–2094 (https://doi.org/10.1039/C7EE01535F)

X. Lin, J. Huang, H. Tan, J. Huang, & B. Zhang, Energy Storage Materials 16 (2019) 97–101 (https://doi.org/10.1016/j.ensm.2018.04.026)

H. Xu, H. Chen, & C. Gao, ACS Materials Lett. 3 (2021) 1221–1237 (https://doi.org/10.1021/acsmaterialslett.1c00280)

R. Rajagopalan, Y. Tang, X. Ji, C. Jia, & H. Wang, Advanced Functional Materials 30 (2020) 1909486 (https://doi.org/10.1002/adfm.201909486)

J.-Y. Hwang, S.-T. Myung, & Y.-K. Sun, Advanced Functional Materials 28 (2018) 1802938 (https://doi.org/10.1002/adfm.201802938)

Y. Mekonnen, A. Sundararajan, & A. I. Sarwat, A review of cathode and anode materials for lithium-ion batteries. in SoutheastCon 2016, 2016, pp. 1–6 (https://doi.org/10.1109/SECON.2016.7506639)

X. Zeng, M. Li, D. Abd El‐Hady, W. Alshitari, A. S. Al‐Bogami, J. Lu, & K. Amine, Adv. Energy Mater. 9 (2019) 1900161 (https://doi.org/10.1002/aenm.201900161)

H. Vikström, S. Davidsson, & M. Höök, Applied Energy 110 (2013) 252–266 (https://doi.org/10.1016/j.apenergy.2013.04.005)

S. Ziemann, D. B. Müller, L. Schebek, & M. Weil, Resources, Conservation and Recycling 133 (2018) 76–85 (https://doi.org/10.1016/j.resconrec.2018.01.031)

R. T. Nguyen, R. G. Eggert, M. H. Severson, & C. G. Anderson, Resources, Conservation and Recycling 167 (2021) 105198 (https://doi.org/10.1016/j.resconrec.2020.105198)

G. Zubi, R. Dufo-López, M. Carvalho, & G. Pasaoglu, Renewable and Sustainable Energy Reviews 89 (2018) 292–308 (https://doi.org/10.1016/j.rser.2018.03.002)

J. Zhao, X. Zou, Y. Zhu, Y. Xu, & C. Wang, Advanced Functional Materials 26 (2016) 8103–8110 (https://doi.org/10.1002/adfm.201602248)

Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, & Y. Lei, Nat Commun 9 (2018) 1720 (https://doi.org/10.1038/s41467-018-04190-z)

S. Zhang, Y. Liu, Q. Fan, C. Zhang, T. Zhou, K. Kalantar-Zadeh, & Z. Guo, Energy Environ. Sci. 14 (2021) 4177–4202 (https://doi.org/10.1039/D1EE00531F)

L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, & Y.-S. Hu, Nat Energy 4 (2019) 495–503 (https://doi.org/10.1038/s41560-019-0388-0)

K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, & S. Komaba, Chem. Rec. 18 (2018) 459–479 (https://doi.org/10.1002/tcr.201700057)

J. C. Pramudita, D. Sehrawat, D. Goonetilleke, & N. Sharma, Advanced Energy Materials 7 (2017) 1602911 (https://doi.org/10.1002/aenm.201602911)

Z. Jian, Y. Liang, I. A. Rodríguez-Pérez, Y. Yao, & X. Ji, Electrochemistry Communications 71 (2016) 5–8 (https://doi.org/10.1016/j.elecom.2016.07.011)

M. Sajjad, F. Cheng, & W. Lu, RSC Advances 11 (2021) 25450–25460 (https://doi.org/10.1039/D1RA02445K)

X. Lu, M. E. Bowden, V. L. Sprenkle, & J. Liu, Advanced Materials 27 (2015) 5915–5922 (https://doi.org/10.1002/adma.201502343)

S. Liu, L. Kang, J. Henzie, J. Zhang, J. Ha, M. A. Amin, M. S. A. Hossain, S. C. Jun, & Y. Yamauchi, ACS Nano 15 (2021) 18931–18973 (https://doi.org/10.1021/acsnano.1c08428)

Y.-S. Xu, S.-Y. Duan, Y.-G. Sun, D.-S. Bin, X.-S. Tao, D. Zhang, Y. Liu, A.-M. Cao, & L.-J. Wan, J. Mater. Chem. A 7 (2019) 4334–4352 (https://doi.org/10.1039/C8TA10953B)

Y. Wu, Y. Sun, Y. Tong, X. Liu, J. Zheng, D. Han, H. Li, & L. Niu, Energy Storage Materials 41 (2021) 108–132 (https://doi.org/10.1016/j.ensm.2021.05.045)

A. Errougui, M. Talbi, & M. Kouali, E3S Web of Conferences 297 (2021) 01009 (https://doi.org/10.1051/e3sconf/202129701009)

T. Noël, Y. Cao, & G. Laudadio, Acc. Chem. Res. 52 (2019) 2858–2869 (https://doi.org/10.1021/acs.accounts.9b00412)

A. Errougui, M. Talbi, & M. El Kouali, Egyptian Journal of Chemistry 65 (2022) 1–8 (https://doi.org/10.21608/ejchem.2021.67302.3453)

A. Errougui, A. Lahmidi, S. Chtita, M. El Kouali, & M. Talbi, J Solution Chem 52 (2023) 176–186 (https://doi.org/10.1007/s10953-022-01222-7)

G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, & W. L. Jorgensen, J. Phys. Chem. B 105 (2001) 6474–6487 (https://doi.org/10.1021/jp003919d)

M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, & E. Lindahl, SoftwareX 1–2 (2015) 19–25 (https://doi.org/10.1016/j.softx.2015.06.001)

B. Hess, C. Kutzner, D. Van Der Spoel, & E. Lindahl, J. Chem. Theory Comput. 4 (2008) 435–447 (https://doi.org/10.1021/ct700301q)

M. Parrinello, & A. Rahman, Journal of Applied Physics 52 (1981) 7182–7190 (https://doi.org/10.1063/1.328693)

S. Nosé, Molecular Physics 52 (1984) 255–268 (https://doi.org/10.1080/00268978400101201)

W. G. Hoover, Phys. Rev. A 31 (1985) 1695–1697 (https://doi.org/10.1103/PhysRevA.31.1695)

H. J. C. Berendsen, J. R. Grigera, & T. P. Straatsma, J. Phys. Chem. 91 (1987) 6269–6271 (https://doi.org/10.1021/j100308a038)

S. I. Sandler, & J. K. Wheatley, Chemical Physics Letters 10 (1971) 375–378 (https://doi.org/10.1016/0009-2614(71)80313-5)

C. J. Fennell, A. Bizjak, V. Vlachy, & K. A. Dill, J. Phys. Chem. B 113 (2009) 6782–6791 (https://doi.org/10.1021/jp809782z)

J. Zielkiewicz, The Journal of Chemical Physics 123 (2005) 104501 (https://doi.org/10.1063/1.2018637)

S. Reiser, S. Deublein, J. Vrabec, & H. Hasse, J Chem Phys 140 (2014) 044504 (https://doi.org/10.1063/1.4858392)

Y. Waseda, ed., Experimental Determination of Partial and Environmental Structure Functions in Non-crystalline Systems — Fundamental Aspects. in Anomalous X-Ray Scattering for Material Characterization: Atomic-Scale Structure Determination, Springer, Berlin, Heidelberg, 2002, pp. 9–20 (https://doi.org/10.1007/3-540-46008-X_2)

M. Guo, W. Wang, & H. Lu, Fluid Phase Equilibria 60 (1990) 37–45 (https://doi.org/10.1016/0378-3812(90)85041-8)

X. Zhang, X. Liu, M. He, Y. Zhang, Y. Sun, & X. Lu, Fluid Phase Equilibria 518 (2020) 112625 (https://doi.org/10.1016/j.fluid.2020.112625)

S. Deublein, J. Vrabec, & H. Hasse, J Chem Phys 136 (2012) 084501 (https://doi.org/10.1063/1.3687238)

Y. Laudernet, T. Cartailler, P. Turq, & M. Ferrario, J. Phys. Chem. B 107 (2003) 2354–2361 (https://doi.org/10.1021/jp0223814)

D. W. McCall, & D. C. Douglass, J. Phys. Chem. 69 (1965) 2001–2011 (https://doi.org/10.1021/j100890a034)

F. E. Harris, & C. T. O’Konski, J. Phys. Chem. 61 (1957) 310–319 (https://doi.org/10.1021/j150549a009).

Most read articles by the same author(s)