Molecular dynamics modelling of the structural, dynamic, and dielectric properties of the {LiF – Ethylene carbonate} energy storage system at various temperatures
Main Article Content
Abstract
Lithium-ion batteries (LIBs) play a vital role in advancing the hybrid industry, especially in electric vehicles, as clean and sustainable electrochemical energy sources. However, the prevalent use of organic solvents in the liquid electrolytes of these energy storage systems raises environmental concerns. In this study, we investigated the impact of a polar aprotic solvent, Ethylene Carbonate (EC), on the structural, dynamic, and dielectric properties of the LiF electrolyte using molecular dynamics simulations. By employing the CHARMM 36 force field, our goal was to comprehend the various physicochemical phenomena occurring in this electrolytic system across different temperatures within the saturation region. The structural properties were analyzed through the computation of the radial distribution function (RDF) for various pairs, while the dynamic and dielectric behaviors were elucidated by simulating the self-diffusion coefficient (D) and the dielectric constant (ε).
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Renew. Sust. Energ. Rev. 13 (2009) 1513–1522 (https://doi.org/10.1016/j.rser.2008.09.028)
A. Kusko, J. Dedad, IEEE Ind. Appl. Mag. 13 (2007) 66–72 (https://doi.org/10.1109/MIA.2007.4283511)
T. M. I. Mahlia, T. J. Saktisahdan, A. Jannifar, M. H. Hasan, H. S. C. Matseelar, Renew. Sust. Energ. Rev. 33 (2014) 532–545 (https://doi.org/10.1016/j.rser.2014.01.068)
H. Ibrahim, A. Ilinc, Techno-Economic Analysis of Different Energy Storage Technologies. in Energy Storage - Technologies and Applications, A. Zobaa, Ed., InTech, (2013) (https://doi.org/10.5772/52220)
D. Lefebvre, F. H. Tezel, Renew. Sust. Energ. Rev. 67 (2017) 116–125 (https://doi.org/10.1016/j.rser.2016.08.019)
S. Hameer, J. L. Van Niekerk, Int. J. Energy Res. 39 (2015) 1179–1195 (https://doi.org/10.1002/er.3294)
S. Chen, C. Niu, H. Lee, Q. Li, L. Yu, W. Xu, J.-G. Zhang, E. J. Dufek, M. S. Whittingham, S. Meng, J. Xiao, J. Liu, Joule 3 (2019) 1094–1105 (https://doi.org/10.1016/j.joule.2019.02.004)
O. Salihoglu, R. Demir-Cakan, J. Electrochem. Soc. 164 (2017) A2948 (https://doi.org/10.1149/2.0271713jes)
X.-B. Cheng, C. Yan, J.-Q. Huang, P. Li, L. Zhu, L. Zhao, Y. Zhang, W. Zhu, S.-T. Yang, Q. Zhang, Energy Storage Mater. 6 (2017) 18–25 (https://doi.org/10.1016/j.ensm.2016.09.003)
H. Li, Joule 3 (2019) 911–914 (https://doi.org/10.1016/j.joule.2019.03.028)
C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, & J. Liu, Nat. Energy 4 (2019) 551–559 (https://doi.org/10.1038/s41560-019-0390-6)
J. Y. Hwang, S. J. Park, C. S. Yoon, Y. K. Sun, Energy Environ. Sci. 12 (2019) 2174–2184 (https://doi.org/10.1039/C9EE00716D)
A. Arslanargin, A. Powers, T. L. Beck, S. W. Rick, J. Phys. Chem. B 120 (2016) 1497–1508 (https://doi.org/10.1021/acs.jpcb.5b06891)
X. You, M. I. Chaudhari, S. B. Rempe, L. R. Pratt, J. Phys. Chem. B 120 (2016) 1849–1853 (https://doi.org/10.1021/acs.jpcb.5b09561)
X. Li, G. Cheruvally, J. K. Kim, J. W. Choi, J.-H. Ahn, K. W. Kim, H. J. Ahn, J. Power Sources 167 (2007) 491–498 (https://doi.org/10.1016/j.jpowsour.2007.02.032)
L. Long, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A 4 (2016) 10038–10069 (https://doi.org/10.1039/C6TA02621D)
A. Errougui, M. Talbi, M. Kouali, J. E3S Web Conf 297 (2021) 01009 (https://doi.org/10.1051/e3sconf/202129701009)
A. Errougui, A. Lahmidi, S. Chtita, M. El Kouali, M. Talbi, J. Solution Chem. 52 (2023) 176–186 (https://doi.org/10.1007/s10953-022-01222-7)
A. Lahmidi, S. Rabii, S. Chtita, M. E. Kouali, M. Talbi, A. Errougui, Chem. Phys. Impact 8 (2024) 100400 (https://doi.org/10.1016/j.chphi.2023.100400)
B. Hess, C. Kutzner, D. Van Der Spoel, E. Lindahl, J. Chem. Theory Comput. 4 (2008) 435–447 (https://doi.org/10.1021/ct700301q)
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 1–2 (2015) 19–25 (https://doi.org/10.1016/j.softx.2015.06.001)
B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 30 (2009) 1545–1614 (https://doi.org/10.1002/jcc.21287)
P. Bjelkmar, P. Larsson, M. A. Cuendet, B. Hess, E. Lindahl, J. Chem. Theory Comput 6 (2010) 459–466 (https://doi.org/10.1021/ct900549r)
T. Darden, D. York, L. Pedersen, J. Phys. Chem. 98 (1993) 10089–10092 (https://doi.org/10.1063/1.464397)
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, J. Phys. Chem. 103 (1995) 8577–8593 (https://doi.org/10.1063/1.470117)
M. Parrinello, A. Rahman, J. Appl. Phys 52 (1981) 7182–7190 (https://doi.org/10.1063/1.328693)
S. Nosé, Mol. Phys. 52 (1984) 255–268 (https://doi.org/10.1080/00268978400101201)
W. G. Hoover, Phys. Rev. A 31 (1985) 1695–1697 (https://doi.org/10.1103/PhysRevA.31.1695)
A. Errougui, M. Talbi, M. El Kouali, Egypt. J. Chem. 65 (2022) 1–8 (https://doi.org/10.21608/ejchem.2021.67302.3453)
A. Lahmidi, S. Rabii, A. Errougui, S. Chtita, M. E. Kouali, M. Talbi, J. Serb. Chem. Soc. (2024) (https://doi.org/10.2298/JSC231106003L)
D. Ward, R. Jones, J. Templeton, K. Reyes, M. Kane, ECS Trans. 61 (2014) 181 (https://doi.org/10.1149/06127.0181ecst)
T.-M. Chang, L. X. Dang, J. Phys. Chem. 147 (2017) 161709 (https://doi.org/10.1063/1.4991565)
R. Parida, S. Pahari, M. Jana, J. Power Sources 521 (2022) 230962 (https://doi.org/10.1016/j.jpowsour.2021.230962)
B. Ravikumar, M. Mynam, S. Repaka, B. Rai, J. Mol. Liq. 338 (2021) 116613 (https://doi.org/10.1016/j.molliq.2021.116613)
J.-C. Soetens, C. Millot, B. Maigret, I. Bakó, J. Mol. Liq. 92 (2001) 201–216 (https://doi.org/10.1016/S0167-7322(01)00192-1)
L. B. Silva, & L. C. G. Freitas, J. Mol. Struct: THEOCHEM 806 (2007) 23–34 (https://doi.org/10.1016/j.theochem.2006.10.014)
I. Skarmoutsos, V. Ponnuchamy, V. Vetere, S. Mossa, J. Phys. Chem. C 119 (2015) 4502–4515 (https://doi.org/10.1021/jp511132c)
O. Borodin, G. D. Smith, J. Phys. Chem. B 110 (2006) 4971–4977 (https://doi.org/10.1021/jp056249q)
O. Borodin, G. D. Smith, J. Phys. Chem. B 113 (2009) 1763–1776 (https://doi.org/10.1021/jp809614h)
P. Ganesh, D. Jiang, P. R. C. Kent, J. Phys. Chem. B 115 (2011) 3085–3090 (https://doi.org/10.1021/jp2003529)
K. Leung, C. M. Tenney, J. Phys. Chem. C 117 (2013) 24224–24235 (https://doi.org/10.1021/jp408974k)
M. Castriota, E. Cazzanelli, I. Nicotera, L. Coppola, C. Oliviero, G. A. Ranieri, J. Phys. Chem. 118 (2003) 5537–5541 (https://doi.org/10.1063/1.1528190)
M. Armand, P. Touzain, Mater. Sci. Eng. 31 (1977) 319–329 (https://doi.org/10.1016/0025-5416(77)90052-0)
A. J. Parker, Q. Rev. Chem. Soc. 16 (1962) 163–187 (https://doi.org/10.1039/QR9621600163)
J. Jones, M. Anouti, M. Caillon-Caravanier, P. Willmann, D. Lemordant, Fluid Phase Equilibria 285 (2009) 62–68 (https://doi.org/10.1016/j.fluid.2009.07.020)
S. Wang, Z. Tan, L. Sun, S. Xiao, W.Hu, H. Deng, J. Mol. Liq. 369 (2023) 120833 (https://doi.org/10.1016/j.molliq.2022.120833)
X. You, M. I. Chaudhari, S. B. Rempe, L. R. Pratt, J. Phys. Chem. B 120 (2016) 1849–1853 (https://doi.org/10.1021/acs.jpcb.5b09561)
A. Rodriguez, S. T. Lam, M. Hu, ACS Appl. Mater. Interfaces 13 (2021) 55367–55379 (https://doi.org/10.1021/acsami.1c17942)
R. Payne, I. E. Theodorou, J. Phys. Chem. 76 (1927) 2892-2900 (https://doi.org/10.1021/j100664a019).