Comparative study of micellization and surface properties of cationic and anionic surfactants in acetonitrile–water mixed media Scientific paper

Main Article Content

Sujit Kumar Shah
Sandesh Karki
Ajaya Bhattarai
https://orcid.org/0000-0002-2648-4686

Abstract

A comparative study was conducted to investigate the micellization behaviour, surface properties and wettability of the cationic surfactant cetyltri­methylammonium bromide (CTAB) and the anionic surfactant sodium dodecyl sulfate (SDS) in acetonitrile–water (ACN–water) mixed media. Surface tension and contact angle measurements were performed in pure water and ACN–water mixtures (0.10, 0.20 and 0.40 volume fractions of ACN) at 298.15 K to deter­mine the critical micelle concentration (CMC), surface excess concentration (Γmax), minimum surface area per molecule (Amin), micellar surface pressure (πCMC) and packing parameter (P). Contact angle measurements were used to assess wettability on borosilicate glass surfaces. Results indicate that increasing ACN content leads to an increase in CMC, suggesting reduced micellization feasibility in less polar media. Surface excess concentration decreases with higher ACN fractions, while minimum surface area per molecule increases, indicating looser molecular packing at the air/solution interface. Contact angle measurements reveal a decrease in wettability with higher ACN content, dem­onstrating enhanced surfactant adsorption at the solid-liquid interface. Addit­ion­ally, micellar surface pressure and packing parameter decline with inc­reasing ACN concentration. These findings underscore the critical role of sol­vent composition in modifying surfactant aggregation and interfacial behaviour.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. K. Shah, S. Karki, and A. Bhattarai, “Comparative study of micellization and surface properties of cationic and anionic surfactants in acetonitrile–water mixed media: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 11, pp. 1353–1367, Nov. 2025.
Section
Materials

References

M. J. Rosen, J. T. Kunjappu, Surfactants and Interfacial Phenomena, 4th ed., Wiley, New York, 2012, pp. 1–33 (https://doi.org/10.1002/0471670561)

M. E. Jiménez-Castañeda, D. I. Medina, Water 9 (2017) 235 (https://doi.org/10.3390/w9040235)

M. X. Gao, C. F. Liu, Z. L. Wu, Q. L. Zeng, X. X. Yang, W. B. Wu, Y. F. Li, C. Z. Huang, Chem. Comm. 49 (2013) 8015 (https://doi.org/10.1039/C3CC44624G)

T. F. Tadros, An Introduction to Surfactants, De Gruyter, Berlin, 2014, pp. 179–220 (https://doi.org/10.1515/9783110312133.179)

T. Wang, D. Chang, D. Huang, Z. Liu, Y. Wu, H. Liu, H. Yuan, Y. Jiang, Appl. Microbiol. Biotechnol. 105 (2021) 7619 (https://doi.org/10.1007/s00253-021-11602-6)

I. Kralova, J. Sjöblom, J. Dispers. Sci. Technol. 30 (2009) 1363 (https://doi.org/10.1080/01932690902735561)

S. K. Shah, A. Bhattarai, J. Chem. 2020 (2020) 4653092 (https://doi.org/10.1155/2020/4653092)

H. A. Bhuiyan, J. M. Khan, M. R. Islam, S. Rana, A. Ahmad, M. A. Hoque, M. M. Rahman, S. E. Kabir, Int. J. Biol. Macromol. 222 (2022) 181 (https://doi.org/10.1016/j.ijbiomac.2022.09.169)

S. K. Shah, S. K. Chatterjee, A. Bhattarai, J. Chem. 2016 (2016) 2176769 (https://doi.org/10.1155/2016/2176769)

S. K. Shah, S. K. Chatterjee, A. Bhattarai, J. Surfactants Deterg. 19 (2016) 201 (https://doi.org/10.1007/s11743-015-1755-x)

Y. Ghimire, S. Amatya, S. K. Shah, A. Bhattarai, SN. Appl. Sci. 2 (2020) 1295 (https://doi.org/10.1007/s42452-020-3036-1)

L. G. Ionescu, T. Tokuhiro, B. J. Czerniawski, E. S. Smith, in Solution Chemistry of Surfactants, K. L. Mittal, Ed., Plenum Press, New York, 1979, p. 487 (https://doi.org/10.1007/978-1-4615-7880-2_24)

T. P. Niraula, S. K. Shah, S. K. Chatterjee, A. Bhattarai, Karbala Int. J. Mod. Sci. 4 (2018) 26 (https://doi.org/10.1016/j.kijoms.2017.10.004)

M. Bielawska, A. Chodzińska, B. Jańczuk, A. Zdziennicka, Colloids Surfaces, A 424 (2013) 81 (https://doi.org/10.1016/j.colsurfa.2013.02.017)

S. Das, S. Mondal, S. Ghosh, J. Chem. Eng. Data 58 (2013) 2586 (https://doi.org/10.1021/je4004788)

P. K. Misra, B. K. Mishra, G. B. Behera, Colloids Surfaces 57 (1991) 1 (https://doi.org/10.1016/0166-6622(91)80175-N)

J. Šteflová, M. Štefl, S. Walz, M. Knop, O. Trapp, Electrophoresis 37 (2016) 1287 (https://doi.org/10.1002/elps.201500553)

F. Jalali, A. Gerandaneh, J. Dispers. Sci. Technol. 32 (2011) 659 (https://doi.org/10.1080/01932691003800049)

A. J. Ležaić, N. Pejić, J. Goronja, L. Pavun, D. Ðikanović, A. Malenović, Maced. J. Chem. Chem. Eng. 40 (2021) 277 (https://doi.org/10.20450/mjcce.2021.2394)

R. K. Banjare, M. K. Banjare, S. Panda, J. Solution Chem. 49 (2020) 34 (https://doi.org/10.1007/s10953-019-00937-4)

S. K. Shah, A. Giri, S. Adhikari, A. Bhattarai, Tenside Surfactants, Detergents 62 (2025) 132 (https://doi.org/10.1515/tsd-2024-2642)

N. R. Biswal, S. Paria, Ind. Eng. Chem. Res. 51 (2012) 10172 (https://doi.org/10.1021/ie301198k)

S. K. Shah, P. K. Das, A. Bhattarai, Heliyon 11 (2025) e42352 (https://doi.org/10.1016/j.heliyon.2025.e42352)

S. K. Shah, R. M. Leblanc, A. Bhattarai, Results Chem. 15 (2025) 102262 (https://doi.org/10.1016/j.rechem.2025.102262)

K. M. Sachin, S. A. Karpe, M. Singh, A. Bhattarai, Heliyon 5 (2019) e01510 (https://doi.org/10.1016/j.heliyon.2019.e01510)

R. A. Khalil, A. H. A. Zarari, Appl. Surf. Sci. 318 (2014) 85 (https://doi.org/10.1016/j.apsusc.2014.01.046)

C. Tanford, The hydrophobic effect: formation of micelles and biological membranes, J. Wiley & Sons, 1980

D. Das, K. Ismail, J. Coll. Interface Sci. 327 (2008) 198 (https://doi.org/10.1016/j.jcis.2008.07.045)

E. H. Lucassen-Reynders, J. Phys. Chem. 67 (1963) 969 (https://doi.org/10.1021/j100799a005).

Most read articles by the same author(s)