Removal of nickel(II) ions during water purification with ferrous sulfate. Part 1. Mechanism and efficiency of the process

Main Article Content

Oleg D. Linnikov
https://orcid.org/0000-0003-3919-3930
Irina Rodina
https://orcid.org/0000-0003-2071-4863

Abstract

The purification of natural water and wastewater from nickel ions is critically important for both environmental protection and human health due to their high toxicity. This study aimed to investigate the removal of nickel ions from contaminated aqueous solutions using the coagulant FeSO4. The results demonstrate that the removal of nickel ions via iron(III) hydroxide precipitate, formed during coagulation at pH 7 and pH 8, can be accurately described by classical adsorption isotherms, including Langmuir, Freundlich, and Dubinin–Radushkevich models. The calculated free energy of adsorption, based on the Dubinin–Radushkevich equation, does not exceed 8 kJ mol-1, indicating the physical nature of the adsorption process and ruling out ion-exchange interactions between nickel ions and iron(III) hydroxide. The sorption capacity of the resulting iron(III) hydroxide precipitate for nickel ions at pH 8 is 0.727 mg per 1 mg of iron(II) ions added to the solution (0.727 mg (mg Fe)-1). At pH 7, the sorption capacity depends on the initial coagulant concentration and ranges from 0.105 to 0.730 mg (mg Fe)-1. A comparison between FeSO4 and the previously studied coagulant FeCl3 reveals that FeSO4 is more effective at nickel ion removal when the initial iron ion concentration is below 70 mg L-1. However, at higher initial concentrations of iron, FeCl3 demonstrates greater efficacy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
O. D. Linnikov and I. Rodina, “Removal of nickel(II) ions during water purification with ferrous sulfate. Part 1. Mechanism and efficiency of the process”, J. Serb. Chem. Soc., Nov. 2025.
Section
Physical Chemistry

References

IARC, Monographs on the Evaluation of the Carcinogenic Risks to Humans: Chromium, Nickel and Welding, Vol. 49, IARC, Lyon, France 1990.

K. Salnikow, A. Zhitkovich, Chem. Res. Tox. 21 (2008) 28-44 (http://doi.org/10.1021/tx700198a)

M. K. Uddin, Chem. Eng. J. 308 (2017) 438-462 (http://dx.doi.org/10.1016/j.cej.2016.09.029)

M. Abbasi, E. Safari, M. Baghadi, M. Janmohammadi, J. Water Proc. Eng. 40 (2021) 101961 (http://doi.org/10.1016/j.jwpe.2021.101961)

R. Donat, A. Akdogan, E. Erdem, H. Cetisli, J. Col. Interf. Sci. 286 (2005) 43-52 (https://doi.org/10.1016/j.jcis.2005.01.045)

Md. A. Islam, Md. R. Awual, M. J. Angove, J. Env. Chem. Eng. 7 (2019) 103305 (http://doi.org/10.1016/j.jece.2019.103305).

S. Kolluru, S. Agarwal, S. Sireesha, I. Sreedhar, S. R. Kale, Proc. Saf. Env. Prot. 150 (2021) 323-355 (http://doi.org/10.1016/j.psep.2021.04.025)

V. N. Krasil’nikov, O. D. Linnikov, O. I. Gyrdasova, I. V. Rodina, A. P. Tyutyunnik, I. V. Baklanova, E. V. Polyakov, N. A. Khlebnikov, N. V. Tarakina, Solid State Sci. 108 (2020) 106429 (https://doi.org/10.1016/j.solidstatesciences.2020.106429)

O. D. Linnikov, I. V. Rodina, I. V. Baklanova, A. Yu. Suntsov, Prot. Met. Phys. Chem. Surf. 57(3) (2021) 255-261 (https://doi.org/10.1134/S2070205121030163)

S. Sivrikaya, S. Albayrak, M. Imamoglu, A. Gundogdu, C. Duran, H. Yildiz, Desal. Water Treat. 50 (2012) 2-13 (https://doi.org/10.1080/19443994.2012.708234)

M. Vakili, M. Rafatullah, J. Yuan, H. M. Zwain, A. Mojiri, F. Gholami, W. Wang, A. S. Giwa, Y. Yu, G. Cagnetta, G. Yu, Rev. Chem. Eng. 37(6) (2021) 755-778 (https://doi.org/10.1515/revce-2019-0047)

S. Yang, J. Li, D. Shao, J. Hu, X. Wang, J. Haz. Mat. 166 (2009) 109-116 (https://doi.org/10.1016/j.jhazmat.2008.11.003)

S. S. Lazarević, I. M. Janković-Častvan, B. M. Jokić, D. T. Janaćković, R. D. Petrović, J. Serb. Chem. Soc. 81(2) (2016) 197-208 (https://doi.org/10.2298/JSC150525086L)

P. D. Johnson, P. Girinathannair, K. N. Ohlinger, S. Ritchie, L. Teuber, J. Kirby, Water Env. Res. 80(5) (2008) 472-479 (http://doi.org/10.2175/106143007X221490)

M. A. Inam, R. Khan, K-H. Lee, Y-M. Wie, Int. J. Env. Res. Pub. Health 18 (2021) 9812 (https://doi.org/10.3390/ijerph18189812)

Z. Wu, M. He, X. Guo, R. Zhou, Sep. Pur. Techn. 76 (2010) 184-190 (https://doi.org/10.1016/j.seppur.2010.10.006)

A. J. Hargreaves, P. Vale, J. Whelan, L. Alibardi, C. Constantino, G. Dotro, E. Cartmell, P. Campo, Clean Techn. Env. Policy 20 (2018) 393-402 (http://doi.org/10.1007/s10098-017-1481-3)

A. H. Jagaba, S. R. M. Kutty, G. Hayder, L. Baloo, A. A. S. Ghaleb, I. M. Lawal, S. Abubakar, B. N. S. Al-dhawi, N. M. Y. Almahbashi, I. Umaru, Ain Shams Eng. J. 12 (2021) 57-64 (http://doi.org/10.1016/j.asej.2020.06.016)

O. D. Linnikov, I. V. Rodina, G. S. Zakharova, K. N. Mikhalev, I. V. Baklanova, Yu.V. Kuznetsova, A. Yu. Germov, B. Yu. Goloborodskii, A. P. Tyutyunnik, Z. A. Fattakhova, Water Env. Res. 94(12) (2022) e10827 (https://doi.org/10.1002/wer.10827)

Y. Deng, Water Res. 31(6) (1997) 1347-1354 (https://doi.org/10.1016/s0043-1354(96)00388-0)

M. Kiyama, T. Takada, Bull. Chem. Soc. Japan 45 (1972) 1923-1924

R. R. Kleshcheva, D. A. Zherebtsov, V. Sh. Mirasov, D. G. Kleshchev, Bull. South Ural State Univ. 1 (2012) 17-22. [in Russian]

T. Misawa, K. Yashimoto, S. Shimodaira, Corr. Sci. 14 (1974) 131-149

Yu. V. Novikov, K. O. Lastochkin, Z. N. Boldina, Methods for studying the quality of water in reservoirs, second ed., supplemented and revised. Medicine, Moscow, 1990. [in Russian].

O. D. Linnikov, I. V. Rodina, Prot. Met. Phys. Chem. Surf. 58(3) (2022) 1116-1124 (https://doi.org/10.1134/S2070205122060107).

G. Limousin, J-P. Gauder, L. Charlet, S. Szenknect, V. Barthès, M. Krimissa, App. Geochem. 22 (2007) 249-275 (https://doi.org/10.1016/j.apgeochem.2006.09.010)

Most read articles by the same author(s)