Removal of nickel(II) ions during water purification with ferrous sulfate. Part 2. Structure and composition of iron(III) hydroxide precipitates

Main Article Content

Oleg D. Linnikov
https://orcid.org/0000-0003-3919-3930
Irina Rodina
https://orcid.org/0000-0003-2071-4863
Galina Zakharova
https://orcid.org/0000-0001-9921-4938
Inna Baklanova
https://orcid.org/0000-0002-5643-7004
Yulia Kuznetsova
https://orcid.org/0000-0002-1253-8727
Alexander Tyutyunnik
https://orcid.org/0000-0003-1360-0913
Zilara Fattakhova
https://orcid.org/0000-0002-5125-9755

Abstract

A comparative analysis of the composition and structure of freshly precipitated iron(III) hydroxide precipitates obtained from a solution of iron(II) sulfate in the presence of sodium sulfate (400 mg L-1) at pH 7 and 8 before and after sorption of nickel ions on them was carried out. Using IR and Raman spectroscopy, X-ray phase and thermogravimetric analysis, it was shown that the precipitates have the general (gross) formula Fe2O3×2H2O and contain a small amount of goethite (α-FeOOH) and lepidocrocite (γ-FeOOH). It has been established that the sorption of nickel ions on these precipitates is not accompanied by chemisorption, i.e. no mixed compounds between iron and nickel are formed. The point of zero charge of precipitation particles is at pH 5.4, with positive zeta potential below and negative above this pH. The introduction of nickel ions into the solution leads to the appearance of a second zero charge point at pH 10.2.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
O. D. Linnikov, “Removal of nickel(II) ions during water purification with ferrous sulfate. Part 2. Structure and composition of iron(III) hydroxide precipitates”, J. Serb. Chem. Soc., Nov. 2025.
Section
Physical Chemistry

References

O. D. Linnikov and I. V. Rodina, J. Serb. Chem. Soc. (2025) (https://doi.org/10.2298/JSC250407080L)

M. Kiyama, T. Takada, Bull. Chem. Soc. Japan 45 (1972) 1923-1924

T. Misawa, K. Yashimoto, S. Shimodaira, Corrosion Science 14 (1974) 131-149

Y. Deng, Water Res. 31(6) (1997) 1347-1354 (https://doi.org/10.1016/s0043-1354(96)00388-0)

R. R. Kleshcheva, D. A. Zherebtsov, V. Sh. Mirasov, D. G. Kleshchev, Bull. South Ural State Univ. 1 (2012) 17-22. [in Russian].

E. V. Petrova, A. F. Dresvyannikov, M. A. Tsyganova, A. M. Gubaidullina, D. V. Wasserman, N. I. Naumkina, Bull. Kazan Techn. Univ. 2 (2009) 24-32. [in Russian].

O. D. Linnikov, I. V. Rodina, G. S. Zakharova, K. N. Mikhalev, I. V. Baklanova, Yu. V. Kuznetsova, A. Yu. Germov, B. Yu. Goloborodskii, A. P. Tyutyunnik, Z. A. Fattakhova, Water Env. Res. 94(12) (2022) e10827 (https://doi.org/10.1002/wer.10827)

M. Hanesch, Geophys. J. Int. 177 (2009) 941-948 (https://doi.org/10.1111/j.1365-246X.2009.04122.x)

D. L. de Faria, S. S. Venâncio, M. T. de Oliveira, J. Raman Spect. 28 (1997) 873-878 (https://doi.org/10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B)

M. A. Legodi, D. de Waal, Dyes and Pigments 74 (2007) 161-168 (https://doi.org/10.1016/j.dyepig.2006.01.038)

M. Kosmulski, S. Durand-Vidal, E. Mazcka, J. B. Rosenholm, J, Col. Interf. Sci. 271 (2004) 261-269 (https://doi.org/10.1016/j.jcis.2003.10.032)

E. Paterson, R. Swaffield, J. Therm. Anal. 18(1) (1980) 161–167 (https://doi.org/10.1007/bf01909464)

M. V. Akhmanova, G. I. Malofeeva, N. P. Andreeva, J. Anal. Chem. 31(3) (1976) 447-453 [in Russian].

L. G. Berg, K. P. Pribylov, V. P. Egunov, R. A. Abdurakhmanov, Russian J. Inorg. Chem. 14(9) (1969) 2303-2306 [in Russian].

J. Liu, R. Zhu, L. Ma, H. Fu, X. Lin, S. C. Parker, M. Molinari, Geoderma 383 (2021), 114799 (https://doi.org/10.1016/j.geoderma.2020.114799)

M. Villalobos, J. Antelo, Revista Internacional de Contaminacion Ambiental 27(2) (2011) 139-151 (https://doi.org/10.20937/RICA.25013)

M. A. Inam, R. Khan, K-H. Lee, Y-M. Wie, Int. J. Env. Res. Pub. Health 18 (2021) 9812 (https://doi.org/10.3390/ijerph18189812).