QTAIM investigations of decorated graphyne and boron nitride for Li detection

Main Article Content

Maryam Dehestani
Leila Zeidabadinejad
Sedigheh Pourestarabadi

Abstract

The interactions between thirteen Li atoms and graphyne (GY) and boron nitride (BN-yne) were investigated by the density functional theory (DFT). The electronic and structural properties of the interactions between the hollow sites of GY and BN-yne with Li atoms were unveiled within the quan­tum theory of atoms in molecules (QTAIM) framework. Theoretical under­stand­ing of the interactions between Li atoms and extended carbon-based network structures is crucial for the development of new materials. Herein, calculations to explore the impact of Li decoration on the GY and BN-yne are reported. It was predicted that Li decoration would increase the density of state of these sheets. Owing to strong interactions between Li and the GY and BN-yne, dramatic changes in the electronic properties of the sheets together with large band gap variations have been observed. The present study sheds deep insight into the chemical properties of the novel carbon–based two-dimensional (2D) structures beyond the graphene sheet.

Article Details

How to Cite
[1]
M. Dehestani, L. Zeidabadinejad, and S. Pourestarabadi, “QTAIM investigations of decorated graphyne and boron nitride for Li detection”, J. Serb. Chem. Soc., vol. 82, no. 3, pp. 289-301, Apr. 2017.
Section
Theoretical Chemistry

References

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. A. Dubonos, I. Gri-go¬rieva, A. Firsov, Science 306 (2004) 666

A. K. Geim, K. S. Novoselov, Nat. Mater. 6 (2007) 183

A. Hirsch, Nat. Mater. 9 (2010) 868

R. J. Lagow, J. J. Kampa, H.-C. Wei, S. L. Battle, J. W. Genge, D. A. Laude, C. J. Harper, R. Bau, R. C. Stevens, J. F. Haw, Science 267 (1995) 362

W. A. Chalifoux, R. R. Tykwinski, Nat. Chem. 2 (2010) 967

S. Schrettl, C. Stefaniu, C. Schwieger, G. Pasche, E. Oveisi, Y. Fontana, Nat. Chem. 6 (2014) 468

Y. Li, L. Xu, H. Liu, Y. Li, Chem. Soc. Rev. 43 (2014) 2572

A. Ivanovskii, Prog. Solid State Chem. 41 (2013) 1

R. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 87 (1987) 6687

N. Narita, S. Nagai, S. Suzuki, K. Nakao, Phys. Rev., B 58 (1998) 11009

M. M. Haley, Pure Appl. Chem. 80 (2008) 519

M. Long, L. Tang, D. Wang, Y. Li, Z. Shuai, ACS Nano 5 (2011) 2593

J. Zhou, K. Lv, Q. Wang, X. Chen, Q. Sun, P. Jena, J. Chem. Phys. 134 (2011) 174701

H. Zhang, M. Zhao, X. He, Z. Wang, X. Zhang, X. Liu, J. Phys. Chem., C 115 (2011) 8845

J. Kang, J. Li, F. Wu, S.-S. Li, J.-B. Xia, J. Phys. Chem., C 115 (2011) 20466

M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, revision A. 02, Gaussian, Inc., Wallingford, CT, 2009)

R. F. W. Bader, Atoms in molecules, Wiley Online Library, 1990

R. Bader, AIM2000 Program, v. 2.0, McMaster University, Hamilton, ON, Canada, 2000

K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 20 (1952) 722

K. Fukui, T. Yonezawa, C. Nagata, H. Shingu, J. Chem. Phys. 22 (1954) 1433

A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899

S. M. Sze, K. K. Ng. Physics of semiconductor devices, 3rd ed., Wiley, New York, 2006

E. E. Hodgkin, W. G. Richards, Int. J. Quant. Chem. 32 (1987) 105.