Prediction of osmotic coefficients for ionic liquids in various solvents with artificial neural network
Abstract
The relationship between the structural descriptions and osmotic coefficients of binary mixtures containing sixteen different ionic liquids and seven kinds of solvents has been investigated by back propagation artificial neural network (BP ANN). The influence of temperature on the osmotic coefficients was considered and the concentrations of ionic liquids were close to 1 mol kg-1, except in acetonitrile. Multi linear regression (MLR) was used to choose the variables for the artificial neural network (ANN) model. A three layer BP ANN with seven variables containing structural descriptions of the ionic liquids and the character of the solvent as input variables was developed. Compared with experimental data, the osmotic coefficients calculated using the ANN model had a high squared correlation coefficient (R2) and a low root mean squared error (RMSE).
Keywords
Full Text:
PDF (394 kB)References
J. Lu, F. Yan, J. Texter, Prog. Polym. Sci. 34 (2009) 431
R. F. Alamdari, F. G. Zamani, N. Zekri, J. Serb. Chem. Soc. 79 (2014) 1337
Y. Fukaya, R. Asai, S. Kadotani, T. Nokami, T. Itoh, Chem. Lett. 89 (2016) 879
Y. Cao, S. Yao, X. M. Wang, Q. Peng, H. Song, in Handbook of Ionic Liquids: Pro-perties, Applications and Hazards, J. Mun, H. Sim, Eds., Nova Publishers, Hauppauge, NY, 2012, p. 162
H Shekaari, M. T. Zafarani-Moattar, Fluid Phase Equilib. 254 (2007) 198
N. Calvar, B. Gonzalez, A. Dominguez, E. A. Macedo, J. Chem. Thermodyn. 41 (2009) 11
H. Shekaari, S. S. Mousavi, Fluid Phase Equilib. 279 (2009) 73
J. Safarov, S. P. Verevkin, E. Bich, A. Heintz, J. Chem. Eng. Data 51 (2006) 518
W. Lei, X. M. Wu, C. S. Qi, H. Rong, L. F. Gong, J. Mol. Struct.: THEOCHEM 942 (2010) 19
F. Gharagheizi, P. Ilani-Kashkouli, A. H. Mohammadi, Fluid Phase Equilibr. 329 (2012) 1
W. Shi, D. C. Sorescu, D. R. Luebke, M. J. Keller, S. Wickramanayake, J. Phys. Chem., B 114 (2010) 6531
J. Picálek, J. Kolafa, J. Mol. Liq. 134 (2007) 29
M. Safamirzaei, H. Modarress, Thermochim. Acta 545 (2012) 125
X. Y. Ji, C. Held, G. Sadowski, Fluid Phase Equilib. 335 (2012) 64
M. Lashkarblooki, A. Z. Hezave, A. M. Al-Ajmi, S. Ayatollahi, Fluid Phase Equilib. 326 (2012) 15
R. L. Gardas, J. A. P. Coutinho, Fluid Phase Equilib. 266 (2008) 195
K. Tochigi, H. Yamamoto, J. Phys. Chem., C 111 (2007) 15989
Y. Cao, J. Yu, H. Song, X. L. Wang, S. Yao, J. Serb. Chem. Soc. 78 (2013) 653
Z. Karimzadeh, S. A. A. Hosseini, F. Deyhimi, Chem. Phys. 371 (2010) 55
X. L. Ge, X. D. Wang, M. Zhang, S. Seetharaman, J. Chem. Eng. Data 52 (2007) 538
H. Shekaari, S. S. Mousavi, J. Chem. Eng. Data 54 (2009) 823
Y. S. Zheng, Q. Mo, Z. M. Liu, Chin. J. Prog. Chem. 21 (2009) 1772
Ionic Liquids Database – (IL Thermo), http://ilthermo.boulder.nist.gov/ILThermo/pure¬prp.uix.do (accessed 17 March 2011)
H. Shekaari, S. S. Mousavi, J. Chem. Thermodyn. 41 (2009) 90
R. L. Gardas, D. H. Dagade, J. A. P. Coutinho, K. J. Patil, J. Phys. Chem., B 112 (2008) 3380
F. H. Allen, Acta Crystallogr., B 58 (2002) 380
C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785
A. D. Becke, J. Chem. Phys. 98 (1993) 5648
Gaussian 03, revision C.02, Gaussian, Inc., Wallingford, CT, 2004
L. B. Kier, L. H. Hall, Croat. Chem. Acta 75 (2002) 371
M. Goodarzi, T. Chen, M. P. Freitas, Chemom. Intell. Lab. Syst. 104 (2010) 260
A. Talevi, M. Goodarzi, E. V. Ortiz, P. R. Duchowicz, C. L. Bellera, G. Pesce, E. A. Castro, L. E. Bruno-Blanch, Eur. J. Med. Chem. 46 (2011) 218
F. Nami, F. Deyhimi, J. Chem. Thermodyn. 43 (2011) 22
R. Singh, R. S. Bhoopal, S. Kumar, Build. Environ. 46 (2011) 2603
L. Xi, H. Sun, J. Li, H. Liu, X. Yao, P. Gramatica, Chem. Eng. J. 163 (2010) 195.
DOI: https://doi.org/10.2298/JSC160725013D
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 J. Serb. Chem. Soc.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)