(p,ρ,T) properties of 1-octyl-3-methylimidazolium tetrafluoroborate

Javid T. Safarov, Aygul T. Namazova, Astan N. Shahverdyiev, Egon P. Hassel


(p,ρ,T) data of 1-octyl-3-methylimidazolium tetrafluoroborate [OMIM][BF4] over a wide range of temperatures, from 278.15 to 413.15 K, and pressures, p, up to 140 MPa are reported with an estimated ±0.01–0.08 % experimental relative average percent deviation (APD) in density. The measurements were carried out using an Anton Paar DMA HPM vibration tube densimeter. (p,ρ,T) data of [OMIM][BF4] has been fitted and parameters of the applied equation were determined as a function of pressure and temperature. After a thorough analysis of literature values and validity of the used equation of state, various thermophysical properties such as isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, thermal pressure coefficient, internal pressure, heat capacities at constant pressure and volume, speed of sound and isentropic exponent at temperatures 278.15–413.15 K and pressures pup to 140 MPa were calculated.



ionic liquid; density; equation of state; thermal properties; caloric properties; speed of sound


Applications of ionic liquids in science and technology, S. T. Handy, Ed., InTech, Rijeka, 2011

N. V. Plechkova, K. R. Seddon, Ionic Liquids further UnCOILed, Critical Expert Overviews, Wiley, New York, 2014, p. 360

J. Safarov, A. Namazova, A. Shahverdiyev, E. Hassel, J. Processes Petrochem. Oil Refining 17 (2016) 226

J. Safarov, R. Hamidova, S. Zepik, H. Schmidt, I. Kul, A. Shahverdiyev, E. Hassel, J. Mol. Liq. 187 (2013) 137

J. Safarov, M. Geppert-Rybczyńska, I. Kul, E. Hassel, Fluid Phase Equilib. 383 (2014) 144

R. Hamidova, I. Kul, J. Safarov, A. Shahverdiyev, E. Hassel, Braz. J. Chem. Eng. 32 (2015) 303

Z. Gu, J. F. Brennecke, J. Chem. Eng. Data 47 (2002) 339

K. R. Harris, M. Kanakubo, L. A. Woolf, J. Chem. Eng. Data 51 (2006) 1161

R. L. Gardas, M. G. Freire, P. J. Carvalho, I. M. Marrucho, I. M. A. Fonseca, A. G. M. Ferreira, J. A. P. Coutinho, J. Chem. Eng. Data 52 (2007) 80

Y. A. Sanmamed, D. Gonzalez-Salgado, J. Troncoso, L. Romani, A. Baylaucq, C. Boned, J. Chem. Therm. 42 (2010) 553

D. Tomida, S. Kenmochi, T. Tsukada, K. Qiao, Q. Bao, C. Yokoyama, Int. J. Thermo¬phys. 33 (2012) 959

S. M. Hosseini, M. M. Alavianmehr, J. Moghadasi, Fluid Phase Equilib. 356 (2013) 185

N. Roshan, S. Ghader, Fluid Phase Equilib. 358 (2013) 172

M. C. C. Ribeiro, A. A. H. Padua, M. F. C. Gomes, J. Chem. Phys. 140 (2014) 244514/1

P. Navia, J. Troncoso, L. Romanı, J. Chem. Eng. Data 55 (2010) 595

J. Safarov, F. J. Millero, R. Feistel, A. Heintz, E. Hassel, Ocean Sci. 5 (2009) 235

N. Nabiyev, M. Bashirov, J. Safarov, A. Shahverdiyev, E. Hassel, J. Chem. Eng. Data 54 (2009) 1799

H. Stabinger, Density Measurement using Modern Oscillating Transducers, South Yorkshire Trading Standards Unit, Sheffield, 1994

S. J. Aschcroft, D. R. Booker, J. C. R. Turner, J. Chem. Soc., Faraday Trans. 86 (1990) 145

H. Fitzgerald, D. Fitzgerald, Petroleum Review, The Institute of Petroleum, London, 1992, p. 544

J. J. Segovia, O. Fandiño, E. R. López, L. Lugoa, M. C. Martín, J. Fernández, J. Chem. Therm. 41 (2009) 632

J. T. Safarov, J. Chem. Therm. 35 (2003) 1929

J. T. Safarov, F. J. Millero, R. Feistel, A. Heintz, E. Hassel, Ocean Sci. 5 (2009) 235

J. T. Safarov, B. Ahmadov, S. Mirzayev, A. Shahverdiyev, E. Hassel, J. Mol. Liq. 209 (2015) 465

M. K. Fedorov, V. K. Stashulenok, J. Struct. Chem. 22 (1981) 140

J. N. A. C. Lopes, A. A. H. Padua, J. Phys. Chem., B 110 (2006) 3330.

DOI: https://doi.org/10.2298/JSC161129091S

Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)