Experimental investigation and modeling of thermophysical and extraction properties of choline chloride + DL-malic acid based deep eutectic solvent

Jelena M. Vuksanović, Nina M. Todorović, Mirjana Lj. Kijevčanin, Slobodan P. Šerbanovi, Ivona R. Radović


The ability of non-toxic and biodegradable deep eutectic solvent (DES) choline chloride + DL-malic acid in mole ratio 1:1, for the breaking of the azeotropes heptane + methanol and toluene + methanol by means of liquid––liquid extraction was evaluated. Ternary liquid–liquid equilibrium experi­ments were performed at 298.15 K and at atmospheric pressure. Densities, viscosities and refractive indices of DES + methanol and water + DES systems were experimentally determined over a wide temperature range and at atmo­spheric pressure. Additionally, the viscosities of DES + glycerol mixture were -determined at temperatures up to 363.15 K to check how much the addition of glycerol decreases high viscosities of DES. The results indicate that the addi­tion of small amounts of water or glycerol as a third component significantly decreases the viscosity of the investigated deep eutectic solvent. Based on the selectivity and distribution ratio values, the extraction ability of the inves­tigated deep eutectic solvent, in comparison with the conventionally used sol­vents, yields promising results. Non-random two-liquid (NRTL) and universal quasichemical (UNIQUAC) models were satisfactorily applied for correlation of experimental phase equilibrium data for two ternary mixtures.


deep eutectic solvents; choline chloride; DL-malic acid; quantitative 13C-NMR spectroscopy; liquid–liquid equilibria; modelling


P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York, 2000

E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev. 114 (2014) 11060

A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun. (2003) 70

A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, R. K. Rasheed, J. Am. Chem. Soc. 126 (2004) 9142

C. Ruß, B. König, Green Chem. 14 (2012) 2969

M. Francisco, A. van den Bruinhorst, L. F. Zubeir, C. J. Peters, M. C. Kroon, Fluid Phase Equilib. 340 (2013) 77

B. Tang, K. H. Row, Monatsh. Chem. 144 (2013) 1427

D. Carriazo, M. C. Serrano, M. C. Gutiérrez, M. L. Ferrer, F. del Monte, Chem. Soc. Rev. 41 (2012) 4996

N. R. Rodriguez, P. F. Requejo, M. C. Kroon, ‎Ind. Eng. Chem. Res. 54 (2015) 11404

A. S. B. Gonzalez, M. Francisco, G. Jimeno, S. L. G. De Dios, M. C. Kroon, Fluid Phase Equilib. 360 (2013) 54

Y. Dai, J. van Spronsen, G. J. Witkamp, R. Verpoorte, Y. H. Choi, Anal. Chim. Acta 766 (2013) 61

Y. Dai, G. J. Witkamp, R. Verpoorte, Y. H. Choi, Anal. Chem. 85 (2013) 6272

M. Wlazło, A. Marciniak, Fluid Phase Equilib. 338 (2013) 253

S. Mandal, V. G. Pangarkar, J. Memb. Sci. 201 (2002) 175

M. S. Calado, G. R. Ivaniš, J. M. Vuksanović, M. Lj. Kijevčanin, S. P. Šerbanović, Z. P. Višak, Fluid Phase Equilib. 344 (2013) 6

M. Francisco, A. van den Bruinhorst, M. C. Kroon, Green Chem. 14 (2012) 2153

V. Najdanović-Višak, A. Rodriguez, Z. P. Višak, J. N. Rosa, C. А. M. Afonso, M. Nunes da Ponte, L. P. N. Rebelo, Fluid Phase Equilib. 254 (2007) 35

J. M. Vuksanović, E. M. Živković, I. R. Radović, B. D. Djordjević, S. P. Šerbanović, M. Lj. Kijevčanin, Fluid Phase Equilib. 345 (2013) 28

A. Z. Tasić, D. K. Grozdanić, B. D. Djordjević, S. P. Šerbanović, N. Radojković, J. Chem. Eng. Data 40 (1995) 586

H. Renon, J. M. Prausnitz, AIChE J. 14 (1968) 135

D. S. Abrams, J. M. Prausnitz, AIChE J. 21 (1975) 116

M. A. Kareem, F. S. Mjalli, M. Ali Hashim, M. K. O. Hadj-Kali, F. Saadat Ghareh Bagh,

I. M. Alnashef, J. Chem. Thermodyn. 65 (2013) 138

V. Gomis, A. Font, M. Dolores Saquete, J. García-Cano, Fluid Phase Equilib. 385 (2015) 29

R. S. Santiago, G. R. Santos, M. Aznar, Fluid Phase Equilib. 278 (2009) 54

B. E. Poling, J. M. Prausnitz, J. P. O’Connell, The Properties of gases and liquids; 5th ed., McGraw-Hill, New York, 2001

C. Florindo, F. S. Oliveira, L. P. N. Rebelo, A. M. Fernandes, I. M. Marrucho, ACS Sustain. Chem. Eng. 2 (2014) 2416

F. S. Oliveira, A. B. Pereiro, L. P. N. Rebelo, I. M. Marrucho, Green Chem. 15 (2013) 1326

S. J. Lue, J. S. Ou, C. H. Kuo, H. Y. Chen, T. H. Yang, J. Memb. Sci. 347 (2010) 108

A. Marciniak, M. Krolikowski, Fluid Phase Equilib. 318 (2012) 56

A. Yadav, S. Pandey, J. Chem. Eng. Data 59 (2014) 2221

A. Yadav, S. Trivedi, R. Rai, S. Pandey, Fluid Phase Equilib. 367 (2014) 135

Z. Maugeri, P. Domínguez de María, RSC Adv. 2 (2012) 421

M. C. Gutiérrez, M. L. Ferrer, C. R. Mateo, F. Del Monte, Langmuir 25 (2009) 5509

N. V. K. Dutt, Y. V. L. Ravikumar, K. Y. Rani, Chem. Eng. Commun. 200 (2013) 1600

D. B. Davies, A. J. Matheson, Trans. Faraday Soc. 63 (1967) 596.

DOI: https://doi.org/10.2298/JSC170316054V

Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)