Apparent molar volumes Vf of calcium acetate (Ca(CH3COO)2 (aq)) at T=(273.15 to 353.15) K and pressures up to 100 MPa

Duygu Uysal Ziraman, Javid T. Safarov, Özkan Murat Doğan, Egon P. Hassel, Bekir Zühtü Uysal


Pressure, density and temperature (p, ρ, T) data and apparent molar volumes, Vfo, of aqueous calcium acetate solutions Ca(CH3COO)2(aq) over a wide range of temperatures from 273.15 to 353.15 K, pressures up to p = 100 MPa and molalities m, of 0.04918, 0.09367, 0.23797, 0.36365, 0.85923, 1.06930, 1.35223 and 1.81668 mol×kg-1 of Ca(CH3COO)2 are reported. The combined expanded uncertainty of the density (ρ) measurements at the 95 % confidence level with a coverage factor of k = 2 was estimated to be Uc(ρ) = ±0.3 kg∙m‐3. The measurements were realized with an Anton Paar DMA HPM vibration tube density meter. The system was calibrated using double-distilled water, aqueous NaCl solutions, methanol, toluene and acetone. An equation of state for fitting of the (p, ρ, T) data of aqueous calcium acetate was developed as a function of pressure, temperature and molality. After a thorough analysis of literature values and validity of the constructed equation of state, various thermophysical properties, such as isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat cap­acities, thermal pressure coefficient and internal pressure at the investigated state parameter int­ervals were calculated.


density; aqueous calcium acetate solution; apparent molar volume; isothermal compressibility; isobaric thermal expansibility


M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Chem. Eng. Res. & Des. 89 (2011) 1609.

Z. Liang, W. Rongwong, H. Liu, K. Fu, H. Gao, F. Cao, R. Zhang, T. Sema, A. Henni, K. Sumon, D. Nath, D. Gelowitz, W. Srisang, C. Saiwan, A. Benamor, M. Al-Marri, H. Shi, T. Supap, C. Chan, Q. Zhou, M. Abu-Zahra, M. Wilson, W. Olson, R. Idem, P. Tontiwachwuthikul, Int. J. of Greenhouse Gas Control 40 (2015) 26.

P. H. M. Feron, (Ed.) Absorption-Based Post-Combustion Capture of Carbon Dioxide 2016, Woodhead Publishing, Duxford, UK.

R. M. Davidson, Post-combustion Carbon Capture from Coal Fired Plants – Solvent Scrubbing 2007, IEA Clean Coal Centre, CCC/125.

Y. H. Resnik, J. T. Yeh, H. W. Pennline, Int. J. of Env. Tech. and Man. 4 (2004) 89.

Z. Feng, F. Cheng-Gang, W. You-Ting, W. Yuan-Tao, L. Ai-Min, Z. Zhi-Bing, Chem. Eng. J. 160 (2010) 691.

D. Uysal, Absorption of carbon dioxide with calcium acetate solution, PhD Thesis (in Turkish), Graduate School of Natural and Applied Sciences, Gazi University 2016, Ankara, Turkey.

C. Saury, R. Boistelle, F. Dalemat, J. Bruggeman, J. Chem. Eng. Data 38 (1993) 56

B. P. Nikolskiy, (Ed). Chemistry Reference Book 1965, Vol III, 2nd Issue, Moscow-Leningrad.

J. T. Safarov, G. N.Najafov, A. N. Shahverdiyev, E. Hassel, J. Mol. Liq. 116(3) (2005) 157.

J. T. Safarov, G. N. Najafov, A. N. Shahverdiyev, E. Hassel, J. Mol. Liq. 116(3) (2005) 165.

J. T. Safarov, J. Mol. Liq. 123(2-3) (2006) 139

J. T. Safarov, R. M. Jannataliyev, A. N. Shahverdiyev, E. P. Hassel, J. Mol. Liq. 124(1-3) (2006) 51

J. T. Safarov, R. M. Jannataliyev, A. N. Shahverdiyev, E. P. Hassel, J. Mol. Liq. 128(1-3) (2006) 127

J. T. Safarov, F. J. Millero, R. Feistel, A. Heintz, E. Hassel, Ocean Science 5 (2009) 235

T. Guliyev, J. Safarov, A. Shahverdiyev, E. Hassel, J. Chem. Thermodyn. 41 (2009) 1162

J. Safarov, I. Kul, M. A. Talibov, A. Shahverdiyev, E. Hassel, J. Chem. Eng. Data 60 (2015) 1648

J. T. Safarov, J. Chem. Therm. 35 (2003) 1929

O. Redlich, P. Rosenfeld, Z. Phys. Chem. 155(Abt. A, 1) (1931) 65

O. Redlich, D. Meyer, Chem. Rev. 64(3) (1964) 221

P. Debye, E. Hückel, Phys. Z. 9 (1923) 185

D. G. Archer, P. Wang, J. Phys. Chem. Ref. Data 19 (1990) 371


Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)