Soil organic carbon stock variation with climate and land use in shale derived soils

Ayaz Mehmood, Mohammad Akhtar, Shah Rukh, Muhammad Imran, Asma Hasan, Kashif Abbasi, Abdul Qayyum, Talat Mahmood, Waseem Ahmed, Khuram Shahzad, Ayub Khan, Zahoor Ahmad

Abstract


Anthropogenic activities, urbanization and industrialization cause an increase in the atmospheric carbon dioxide. Current focus of the soil scientists and the environmentalists is to quantify the carbon stocks and its flow in the agroecological system which is one of the main causes of global warming and climate change. The information on the distribution of soil organic carbon (SOC) stocks in the soil profiles in relation with changing climate is barely sufficient. Objective of this study was to quantify the effect of climate and land on the equilibrium of SOC stocks in soil profiles with development. Murree soil series (Typic Hapludolls) in humid climate and under coniferous forest, and Tirnul soil series (Typic Haplustepts) in semiarid climate under cultivation, were selected. Triplicate soil profiles were selected for each of the soils and sampled at genetic horizons level. Cumulative SOC stocks in Typic Hapludolls soil profiles (95 Mg ha-1) were significantly greater than Typic Haplustepts (30 Mg ha-1). The Typic Hapludolls had significantly greater SOC stock at each horizon level under humid climate. This research concludes that soils under forest and humid climate had higher SOC stocks as compared to the soils under semiarid climate and cultivation. 


Keywords


soil genesis; cultivation; climate; land use; carbon stocks

Full Text:

PDF (2,073 kB)

References


P. Schlesinger, J. P. Winkler, in: The Carbon Cycle, T. M. L. Wigley, D. S. Schimel (Eds.), Cambridge University Press, Cambridge, 2000, p. 93

IPCC, Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 2007

R. Lal, Geoderma 123 (2004) 1

P. Schlesinger, J. P. Winkler,. In: The Carbon Cycle, T. M. L. Wigley, D. S. Schimel (Eds.), Cambridge University Press, Cambridge, 2000, p. 93

5W. J. Palmer, R. S. Cherry, W. H. Schlesinger, Soil Biol. Biochem. 28 (1996) 1067

R. Amundson, Rev. Earth Planet Sci. 29 (2001) 535

W. Sombroek, F. O. Nachtergaele, A. Hebel, Ambio 22 (1993) 417

J. W. Raich, C. S. Potter, Global Biogeochem. Cycl. 9 (1995) 23

S. Chen, Y. Huang, J. Zou, Y. Shi, Glob. Planet Change 100 (2013) 99

C. C. Lisboa, R. T. Conant, M. L. Haddix, C. E. P. Cerri, C. C. Cerri, Ecosys. 12 (2009) 1212

R. P. Eclesia, E. G. Jobbagy, R. B. Jackson, F. Biganzoli G. Pineiro, Global Change Biol. 18 (2012) 3237

Y. L. Zinn, R. Lal, D. V. S. Resck, Soil Tillage Res. 84 (2005) 28

S. E. Trumbore, E. A. Davidson, P. B. Camargo, D. C. Nepstad , L. A. Martinelli, Global Biogeochem. Cycl. 9 (1995) 515

R. Lal, Crop Sci. 50 (2010) 120

A. Hassan, S. S. Ijaz, R. Lal, S. Ali, Q. Hussain, M. Ansar, R. H. Khattak, M. S. Baloch, Land Degrad. Develop. 27 (2016) 1175

P. E. Rasmussen, H. P. Collins. Adv. Agron. 45 (1991) 93

O. P. Mehra, M. L. Jackson. Clay Mineral 7 (1960) 317

G. W. Gee, J. W. Bauder, In: Methods of Soil Analysis Part 1, Klute. A. (Ed.), ASA monograph No. 9, Medison, WI, 1986, p. 383

E. O. Mclean, in Methods of Soil Analysis Part II, Chemical and microbiological pro¬perties, No. 9, A. L. Page (Ed.), Am. Soc. Agron., Madison, WI, 1982, p. 199

M. L. Jackson, C. H. Lim, L. W. Zelazny, in Methods of Soil Analysis Part 1, A. Klute (Ed.), ASA No.9, Madison, WI, 1986, p. 101

R. H. Leoppert, C. T. Hallmark, M. M. Koshy, Soil Sci. Soc. Am. J. 48 (1984) 1030

A. Walkley, C. A. Black, Soil Sci. 37 (1934) 29

G. R. Black, K. H. Hartge, in Methods of Soil Analysis part I: Physical and Mineralogical Methods, Agronomy Monograph no. 9 (2nd ed.), A. L. R. H. Miller, D. R. Keeney (Eds.), Am. Soc. Agron., Medison, WI, 1986, p. 363

SAS Version 9, Cary (NC), SAS Institute Inc., Cary, NC, 2003

A. Mehmood, M.S. Akhtar, M. Imran, S. Rukh, Geoderma 310 (2018) 218

H. Jenny, Factors of Soil Formation – A System of Quantitative Pedology, McGraw-Hill, New York, 1941, p. 241

A. J. Jones , L. N. Mielke, C. A. Bartles, C. A. Miller, J. Soil Water Cons. 44 (1989) 328

R. Lal, J. M. Kimble, E. Levine, B. A. Stewart, Soils and Global Change, Adv. Soil Sci. CRC Press, Boca Raton, FL, 1995, p. 440

P. Schjonning, B. T. Christensen, Eur. J. Soil Sci. 45 (1994) 257

T. Larssen, R. D. Vogt, H. M. Seip, G. Furuberg, B. Liao, J. Xiao, J. Xiong, Geoderma 91(1999) 65

H. J. Percival, R. L. Parfitt, N. A. Scott, Soil Sci. Soc. Am. J. 64 (2000) 1623

Z. Tan, R. Lal, L. Owens, R. C. Izaurralde, Soil Tillage Res. 92 (2007) 53

J. D. Patil, N. D. Patil, Plant Soil 60 (1981) 295

G. M. Hugar, V.S. Soraganvi, Int. Res. J. Environ. Sci. 3 (2014) 48

H. E. Dregne, Arid Land Res. Manage. 16 (2002) 99.




DOI: https://doi.org/10.2298/171003115M

Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)