Validation and uncertainty estimation of an analytical method for the determination of phenolic compounds in concrete

Branislava Goran Savić, Ivana Mihajlović, Slobodan Milutinović, Mina Seović, Željka Nikolić, Miloš Tošić, Tanja Brdarić

Abstract


Organic contaminants from building materials negatively affect the health of people. This study presents an analytical method for the simultaneous identification and quantification of 9 phenolic compounds, i.e., phenol, 2-chloro­phenol, 2,4-dimethylphenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 4-chloro-3-
-methylphenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrahlorophenol and pentachloro­phenol, in concrete by a gas chromatographic method with mass spectrometric detection (GC–MS). By comparing the MS spectra of the test compounds with MS spectra of analytical standards, reliable identification was achieved. The method could be applied in a given range (from 0.01 to 7.5 mg kg-1) with appropriate parameters of precision, accuracy, repeatability and linearity. The developed method could be used for quality control testing of phenols in concrete during the construction of new buildings, old residences and construction waste. The measure­ment uncertainty of the phenolic compounds in concrete was evaluated using two approaches, i.e., GUM recommendations and a Monte Carlo method. Disagreement of those methods was observed. The Monte Carlo method could be used in the evaluation of combined measurement uncertainty for the determination of phenolic compounds in concrete.


Keywords


building material; GUM; Monte Carlo

References


EPA, US Environmental Protection Agency, https://www.epa.gov/sites/produc¬tion/fi-les/2015-09/documents/priority-pollutant-list-epa.pdf (Accessed 17 May 2018)

80/778/EEC: Council Directive of 15 July 1980 relating to the quality of water intended for human consumption (1980)

93/72/EEC: Commission Directive of 1 September 1993 adapting to technical progress for the nineteenth time Council Directive 67/548/EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labeling of dangerous substances (1993)

J. Michalowicz, W. Duda, Pol. J. Environ. Stud. 16 (2007) 347 (https://www.pjoes.com/abstracts/2007/Vol16/No03/02.html)

W. Anku, M. Mamo, P. Govender, in Phenolic Compounds - Natural Sources, Importance and Applications, M. Soto-Hernandez, M. Palma-Tenango, M. del Rosario, Garcia-Mateos, Eds., InTechOpen, London, 2017, p. 419 (http://dx.doi.org/10.5772/66927)

J. Wallace, Phenol, in Kirk-Othmer encyclopedia of chemical toxicology, J. I. Kroschwitz, M. Howe-Grant, Eds., Wiley, New York, 1996, p. 592 (https://www.wiley.com/legacy/products/subject/referen¬ce/kirk_contributors.html)

A. T. Hodgson, J. D. Wooley, Assessment of Indoor Concentrations, Indoor Sources and Source Emissions of Selected Volatile Organic Compounds, Applied Science Division, Berkeley, CA, 1991, p. 90 (https://pubarchive.lbl.gov/islandora/ob-ject/ir%3A95348/datastream/PDF/view)

Current list of substances with EU-LCI values, n.d, http://www.eu-lci.org/EU-LCI Website/EU-LCI Values.html (Accessed 9 December 2015)

S. Kubba, Handbook of Green Building Design and Construction, Butterworth-Heinemann, Oxford, 2017, p. 111 (https://www.elsevier.com/books/handbook-of-green-building-design-and-construction/kubba/978-0-12-810433-0)

D. D. Acimovic, Z. M. Nikolic, M. S. Tosic, D. S. Milovanovic, V. M. Nikolic, T. P. Brdaric, M. P. Marceta-Kaninski, J. Hazard. Mater. 325 (2017) 271 (https://doi.org/10.1016/j.jhazmat.2016.12.008)

N. Fattahi, Y. Assadi, M. R. M. Hosseini, J. Chromatogr, A 1157 (2007) 23 (http://dx.doi.org/10.1016/j.chroma.2007.04.062)

M. C. Alcudia-León, R. Lucena, S. Cárdenas, M. Valcárcel, J. Chromatogr. A 1218 (2011) 2176 (http://dx.doi.org/10.1016/j.chroma.2011.02.033)

M. L. Barrico, C. Nabais, M. J. Martins, H. Freitas, Chemosphere 65 (2006) 482 (http://dx.doi.org/10.1016/j.chemosphere.2006.01.061)

N. R. Neng, J. M. F. Nogueira, Molecules 19 (2014) 9369 (https://doi.org/10.3390/molecules19079369)

L. Zhang, L. Zhang, W. Zhang, Y. Zhang, Anal. Chim. Acta 543 (2005) 52 (https://doi.org/10.1016/j.aca.2005.04.025)

Á. Kovács, A. Kende, M. Mörtl, G. Volk, T. Rikker, K. Torkos, J. Chromatogr, A 1194 (2008) 139 (https://doi.org/10.1016/j.microc.2011.04.007)

Á. Kovács, M. Mörtl, A. Kende, Microchem J. 99 (2011) 125 (https://doi.org/10.1016/j.microc.2011.04.007)

M. L. Davı̀, F. Gnudi, Water Res. 33 (1999) 3213 (https://doi.org/10.1016/S0043-1354(99)00027-5)

ISO/TS 17182: Soil quality —Determination of some selected phenols and chlorophenols — Gas chromatographic method with mass spectrometric detection (2014)

E. Meyer, Chemistry of Hazardous Materials, Prentice Hall Building, Englewood Cliffs, NJ, 1989, p. 236

JCGM 100: Evaluation of measurement data – Guide to the expression of uncertainty in measurement (2008)

JCGM 101: Evaluation of measurement data — Supplement 1 to the “Guide to the expression of uncertainty in measurement” — Propagation of distributions using a Monte Carlo method (2008)

M. Sega, F. Pennecchi, S. Rinaldi, F. Rolle, Anal. Chim. Acta 920 (2016) 10 (https://doi.org/10.1016/j.aca.2016.03.032)

D. Theodorou, L. Meligotsidou, S. Karavoltsos, A. Burnetas, M. Dassenakis, M. Scoullos, Talanta 83 (2011) 1568 (https://doi.org/10.1016/j.talanta.2010.11.059)

A. M. Saviano, F. R. Lourenco, Measurement 46 (2013) 3924 (https://doi.org/10.1016/j.measurement.2013.08.005)

W. Niemeier, D. Tengen, J. Appl. Geod. 11 (2017) 67 (https://doi.org/10.1515/jag-2016-0017)

O. Sima, M. C. Lepy, Appl. Radiat. Isot. 109 (2016) 493 (https://doi.org/10.1016/j.apradiso.2015.11.097)

A. Chen, C. Chen, Measurement 87 (2016) 27 (https://doi.org/10.1016/j.measurement.2016.03.007)

JCGM 102: Evaluation of measurement data – Supplement 2 to the “Guide to the expression of uncertainty in measurement” – Extension to any number of output quantities (2011)

JCGM 104: Evaluation of measurement data — An introduction to the “Guide to the expression of uncertainty in measurement” and related documents (2009)

JCGM 106: Evaluation of measurement data – The role of measurement uncertainty in conformity assessment (2012)

JCGM 200: International vocabulary of metrology – Basic and general concepts and associated terms (VIM) (2012)

I. Lira, Evaluating the Measurement Uncertainty – Fundamentals and practical guidance, Institute of Physics Publishing, London, 2002, p. 45 (http://unina2.on-line.it/sebina/repository/catalogazione/documenti/Lira-Evaluating%20the%20measurement%20uncertainty.%20fundamentals%20and%20practical%20guidance.pdf)

V. Chan, Theory and Applications of Monte Carlo Simulations, InTech, Rijeka, 2013, p. 27 (http://dx.doi.org/10.5772/45892)

M. R. Christopher, W. R. Thomas, Development and Validation of Analytical Methods, Pergamon, Oxford, 1996, p 79 (https://www.amazon.com/Development-Validation-Analytical-Pharmaceutical-Biomedical/dp/0080427928)

Eurachem - The Fitness for Purpose of Analytical Methods, https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf (Accessed 17 May 2018).




DOI: https://doi.org/10.2298/JSC180518106S

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (136 of 172 journals)