Theoretical study via DFT for prediction of 13C and 1H NMR data of two diterpenoids derived from the root of Salvia grandifolia (Short communication)

Main Article Content

Renato Araújo da Costa
Sebastião Gomes Silva
Silvana de Oliveira Silva
Jorddy Neves Cruz
Wanessa Almeida da Costa
Luciane do Socorro Nunes dos Santos Brasil
Rai Campos Silva
Cleydson Breno Rodrigues Santos
Cláudio Nahum Alves
Davi do Socorro Barros Brasil

Abstract

The DFT method has become a promising alternative in the support of traditional NMR experimental techniques, comparing experimental data with theoretical data, thereby achieving accurate and satisfactory results. In the present study, the experimental data of two diterpenes were compared to the theoretical data obtained by the GIAO method, applying DFT at the B3LYP/cc-pVDZ and B3PW91/DGDZVP levels to verify the degree of correlation, significance and predictability of the models obtained with the purpose of proving which of the computational methods is the most efficient for this class of substances. The theoretical NMR values obtained at B3LYP/cc-pVDZ were the more satisfactory, showing better linear correlations, presenting greater degrees of adjustments, sig­nificance and predictability compared to the B3PW91/DGDZVP method. Thus, these values were used to define Hα and Hβ 1, 2, 3, 6 and 7 for diterpene 1 and 1, 2, 3, 6 and 7 for diterpene 2, which was not possible using experimental data. This showed that the quantum method used could help in the structural elucid­ation of natural products.

Article Details

How to Cite
[1]
R. A. da Costa, “Theoretical study via DFT for prediction of 13C and 1H NMR data of two diterpenoids derived from the root of Salvia grandifolia (Short communication)”, J. Serb. Chem. Soc., vol. 84, no. 6, pp. 591-598, Jul. 2019.
Section
Theoretical Chemistry
Author Biography

Wanessa Almeida da Costa, 5Program of Post-Graduation in Natural Resources Engineering (PRODERNA/ITEC), Federal University of Para, Belém, Pará

Program of Post-Graduation in Natural Resources Engineering (PRODERNA/ITEC), Federal University of Para

References

C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785 (http://dx.doi.org/10.1103/PhysRevB.37.785)

E. J. Barreiro, C. R. Rodrigues, M. G. Albuquerque, C. M. R. de Sant’Anna, R. B. de Alencastro, Química Nova 20 (1997) 300 (http://dx.doi.org/10.1590/S010040421997000300011)

R. A. Da Costa, F. C. D. A. Nascimento, S. G. Silva, A. D. S. S. Silva, D. D. S. B. Brasil, J. Eng. Technol. Ind. Appl. (ITEGAM-JETIA) 3 (2017) 1 (http://dx.doi.org/10.5935/2447-0228.20170003)

D. Xin, C. A. Sader, U. Fischer, K. Wagner, P.-J. Jones, M. Xing, K. R. Fandrick, N. C. Gonnella, Org. Biomol. Chem. 15 (2017) 928 (http://dx.doi.org/10.1039/C6OB02450E)

D. Xin, C. A. Sader, O. Chaudhary, P. J. Jones, K. Wagner, C. S. Tautermann, Z. Yang, C. A. Busacca, R. A. Saraceno, K. R. Fandrick, N. C. Gonnella, K. Horspool, G. Hansen, C. H. Senanayake, J. Org. Chem. 82 (2017) 5135–5145 (http://dx.doi.org/10.1021/acs.joc.7b00321)

F. S. de Souza, S. de O. Silva, L. J. G. de Faria, C. N. Alves, A. H. Muller, G. M. S. P. Guilhon, D. do S. B. Brasil, Química Nova 38 (2015) 645 (http://dx.doi.org/10.5935/0100-4042.20150057)

S. de O. Silva, R. N. S. Peixoto, J. R. A. Silva, C. N. Alves, G. M. S. P. Guilhon, L. S. Santos, D. D. S. B. Brasil, Int. J. Mol. Sci. 12 (2011) 9389 (http://dx.doi.org/10.3390/ijms12129389)

S. deO. Silva, M. C. Corrêa, H. Bitencourt, W. R. Monteiro, J. Lameira, L. Santos, G. M. P. Guilhon, D. B. Brasil, J. Comput. Theor. Nanosci. 9 (2012) 953 (http://dx.doi.org/10.1166/jctn.2012.2123)

D. S. B. Brasil, A. H. Müller, G. M. S. P. Guilhon, C. N. Alves, G. Peris, R. Llusar, V. Moliner, J. Brazilian Chem. Soc. 21 (2010) 731 (http://dx.doi.org/10.1590/S0103-50532010000400021)

D. S. B. Brasil, C. N. Alves, G. M. S. P. Guilhon, A. H. Muller, R. de S. Secco, G. Peris, R. Llusar, Int. J. Quantum Chem. 108 (2008) 2564 (http://dx.doi.org/10.1002/qua.21673)

D. S. B. Brasil, R. Y. O. Moreira, A. H. Müller, C. N. Alves, Int. J. Quantum Chem. 106 (2006) 2706 (http://dx.doi.org/10.1002/qua.21031)

J. Kang, L. Li, D. Wang, H. Wang, C. Liu, B. Li, Y. Yan, L. Fang, G. Du, R. Chen, Phytochemistry 116 (2015) 337 (http://dx.doi.org/10.1016/j.phytochem.2015.03.014).

J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 104 (1996) 5497–5509 (http://dx.doi.org/10.1063/1.471789)

S. Miertuš, E. Scrocco, J. Tomasi, Chemical Physics 55 (1981) 117 (http://dx.doi.org/10.1016/0301-0104(81)85090-2)

S. Miertus̃, J. Tomasi, Chem. Phys. 65 (1982) 239 (http://dx.doi.org/10.1016/0301-0104(82)85072-6)

Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford, CT, 2016

P. Cimino, L. Gomez-Paloma, D. Duca, R. Riccio, G. Bifulco, Magn. Reson. Chem. 42 (2004) 26 (http://dx.doi.org/10.1002/mrc.1410)

A. C. Gaudio, E. Zandonade, Quimica Nova 24 (2001) 658 (http://dx.doi.org/10.1590/S0100-40422001000500013)

C. B. R. Santos, J. B. Vieira, C. C. Lobato, L. I. S. Hage-Melim, R. N. P. Souto, C. S. Lima, E. V. M. Costa, D. S. B. Brasil, W. J. C. Macêdo, J. C. T. Carvalho, Molecules 19 (2014) 367 (http://dx.doi.org/10.3390/molecules19010367)

J. Costa, C. Santos, K. Costa, R. Ramos, C. H. Silva, W. Macêdo, Química Nova 42(7) (2018) 732 (http://dx.doi.org/10.21577/0100-4042.20170239).

Most read articles by the same author(s)