In silico identification of novel allosteric inhibitors of Dengue virus NS2B/NS3 serine protease Scientific paper

Main Article Content

Renato Araujo da Costa
https://orcid.org/0000-0002-4720-6116
Joao Augusto Pereira da Rocha
https://orcid.org/0000-0002-3178-2362
Alan Sena Pinheiro
https://orcid.org/0000-0003-4339-6765
Andréia do Socorro Silva Da Costa
https://orcid.org/0000-0002-4720-6116
Elaine Cristina Medeiros da Rocha
https://orcid.org/0000-0002-7784-1516
Luiz Patrick Cordeiro Josino
https://orcid.org/0000-0001-7482-9303
Arlan da Silva Gonçalves
https://orcid.org/0000-0002-5965-3191
Anderson Henrique Lima e Lima
https://orcid.org/0000-0002-8451-9912
Davi Socorro Barros Brasil
https://orcid.org/0000-0002-1461-7306

Abstract

Although dengue is a disease that affects more than 100 countries and puts almost 400 million lives at risk each year, there is no approved anti­viral in the treatment of this pathology. In this context, proteases are potential bio­logical targets since they are essential in the replication process of this virus. In this study, a library of more than 3,000 structures was used to explore the allosteric inhibition of the NS2B/NS3 protease complex using consensual docking techniques. The results show four best ranked structures that were sel­ected for molecular dynamics and free energy simulations. The present analysis corroborates with other studies (experimental and theoretical) presented in the literature. Thus, the computational approach used here proved to be useful for planning new inhibitors in the combat against Dengue disease.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
R. A. . da Costa, “In silico identification of novel allosteric inhibitors of Dengue virus NS2B/NS3 serine protease: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 6, pp. 693–706, Apr. 2022.
Section
Theoretical Chemistry

References

A. Wilder-Smith, Murray, M. Quam, Clin. Epidemiol. (2013) 299 (https://doi.org/10.2147/CLEP.S34440)

M. G. Guzman E. Harris, Lancet 385 (2015) 453 (https://doi.org/10.1016/S0140-6736(14)60572-9)

S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, J. M. Drake, J. S. Brownstein, A. G. Hoen, O. Sankoh, M. F. Myers, D. B. George, T. Jaenisch, G. R. W. Wint, C. P. Simmons, T. W. Scott, J. J. Farrar, S. I. Hay, Nature 496 (2013) 504 (https://doi.org/10.1038/nature12060)

C. P. Simmons, K. McPherson, N. Van Vinh Chau, D. T. Hoai Tam, P. Young, J. Mackenzie, B. Wills, Vaccine 33 (2015) 7061 (https://doi.org/10.1016/j.vaccine.2015.09.103)

K. V Pugachev, F. Guirakhoo, D. W. Trent, T. P. Monath, Int. J. Parasitol. 33 (2003) 567 (https://doi.org/10.1016/S0020-7519(03)00063-8)

D. Luo, S. G. Vasudevan, J. Lescar, Antiviral Res. 118 (2015) 148 (https://doi.org/10.1016/j.antiviral.2015.03.014)

M. Yildiz, S. Ghosh, J. A. Bell, W. Sherman, J. A. Hardy, ACS Chem. Biol. 8 (2013) 2744 (https://doi.org/10.1021/cb400612h)

B. Millies, F. von Hammerstein, A. Gellert, S. Hammerschmidt, F. Barthels, U. Göppel, M. Immerheiser, F. Elgner, N. Jung, M. Basic, C. Kersten, W. Kiefer, J. Bodem, E. Hildt, M. Windbergs, U. A. Hellmich, T. Schirmeister, J. Med. Chem. 62 (2019) 11359 (https://doi.org/10.1021/acs.jmedchem.9b01697)

M. Merdanovic, T. Mönig, M. Ehrmann, M. Kaiser, ACS Chem. Biol. 8 (2013) 19 (https://doi.org/10.1021/cb3005935)

M. Aminpour, C. Montemagno, J. A. Tuszynski, Molecules 24 (2019) 1693 (https://doi.org/10.3390/molecules24091693)

T. Casalini, J. Control. Rel. 332 (2021) 390 (https://doi.org/10.1016/j.jconrel.2021. 03.005)

B. S. Kolte, S. R. Londhe, B. R. Solanki, R. N. Gacche, R. J. Meshram, J. Mol. Graph. Model. 80 (2018) 95 (https://doi.org/10.1016/j.jmgm.2017.12.020)

P. Erbel, N. Schiering, A. D’Arcy, M. Renatus, M. Kroemer, S. P. Lim, Z. Yin, T. H. Keller, S. G. Vasudevan, U. Hommel, Nat. Struct. Mol. Biol. 13 (2006) 372 (https://doi.org/10.1038/nsmb1073)

R. Perez-Pineiro, A. Burgos, D. C. Jones, L. C. Andrew, H. Rodriguez, M. Suarez, A. H. Fairlamb, D. S. Wishart, J. Med. Chem. 52 (2009) 1670 (https://doi.org/10.1021/jm801306g)

M. D. de Oliveira, J. de O. Araújo, J. M. P. Galúcio, K. Santana, A. H. Lima, J. Mol. Graph. Model. 101 (2020) 107735 (https://doi.org/10.1016/j.jmgm.2020.107735)

E. Harigua-Souiai, Y. Z. Abdelkrim, I. Bassoumi-Jamoussi, O. Zakraoui, G. Bouvier, K. Essafi-Benkhadir, J. Banroques, N. Desdouits, H. Munier-Lehmann, M. Barhoumi, N. K. Tanner, M. Nilges, A. Blondel, I. Guizani, PLOS Negl. Trop. Dis. 12 (2018) e0006160 (https://doi.org/10.1371/journal.pntd.0006160)

G. Jones, P. Willett, R. C. Glen, J. Mol. Biol. 245 (1995) 43 (https://doi.org/10.1016/s0022-2836(95)80037-9)

S. R. Brozell, S. Mukherjee, T. E. Balius, D. R. Roe, D. A. Case, R. C. Rizzo, J. Comput. Aided Mol. Des. 26 (2012) 749 (https://doi.org/10.1007/s10822-012-9565-y)

M. Brecher, Z. Li, B. Liu, J. Zhang, C. A. Koetzner, A. Alifarag, S. A. Jones, Q. Lin, L. D. Kramer, H. Li, PLoS Pathog. 13 (2017) e1006411 (https://doi.org/10.1371/journal.ppat.1006411)

E. C. Meng, B. K. Shoichet, I. D. Kuntz, J. Comput. Chem. 13 (1992) 505 (https://doi.org/10.1002/jcc.540130412)

I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, T. E. Ferrin, J. Mol. Biol. 161 (1982) 269 (https://doi.org/10.1016/0022-2836(82)90153-X)

A. S. Pinheiro, J. B. C. Duarte, C. N. Alves, F. A. de Molfetta, Appl. Biochem. Biotechnol. 176 (2015) 1709 (https://doi.org/10.1007/s12010-015-1672-5)

J. M. Wang, R. M. Wolf, J. W. Caldwell, P. a Kollman, D. a Case, J. Comput. Chem. 25 (2004) 1157 (https://doi.org/10.1002/jcc.20035)

J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, C. Simmerling, J. Chem. Theory Comput. 11 (2015) 3696 (https://doi.org/10.1021/acs.jctc.5b00255)

P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case, T. E. Cheatham, Acc. Chem. Res 33 (2000) 889 (https://doi.org/10.1021/ar000033j)

Gaussian 09 software, Pittsburgh, PA, 2016

R. Anandakrishnan, B. Aguilar, A. V. Onufriev, Nucleic Acids Res. 40 (2012) W537 (https://doi.org/10.1093/nar/gks375)

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 79 (1983) 926 (https://doi.org/10.1063/1.445869)

T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98 (1993) 10089 (https://doi.org/10.1063/1.464397)

J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, J. Comput. Phys. 23 (1977) 327 (https://doi.org/10.1016/0021-9991(77)90098-5)

E. Wang, H. Sun, J. Wang, Z. Wang, H. Liu, J. Z. H. Zhang, T. Hou, Chem. Rev. 119 (2019) 9478 (https://doi.org/10.1021/acs.chemrev.9b00055)

P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case, T. E. Cheatham, Acc. Chem. Res. 33 (2000) 889 (https://doi.org/10.1021/ar000033j)

S. Genheden U. Ryde, Expert Opin. Drug Discov. 10 (2015) 449 (https://doi.org/10.1517/17460441.2015.1032936)

R. A. Costa, J. N. Cruz, F. C. A. Nascimento, S. G. Silva, S. O. Silva, M. C. Martelli, S. M. L. Carvalho, C. B. R. Santos, A. M. J. C. Neto, D. S. B. Brasil, Med. Chem. Res. 28 (2019) 246 (https://doi.org/10.1007/s00044-018-2280-z)

E. P. Semighini, J. A. Resende, P. de Andrade, P. A. B. Morais, I. Carvalho, C. A. Taft, C. H. T. P. Silva, J. Biomol. Struct. Dyn. 28 (2011) 787 (https://doi.org/10.1080/07391102.2011.10508606)

M. Hariono, S. B. Choi, R. F. Roslim, M. S. Nawi, M. L. Tan, E. E. Kamarulzaman, N. Mohamed, R. Yusof, S. Othman, N. Abd Rahman, R. Othman, H. A. Wahab, PLOS One 14 (2019) e0210869 (https://doi.org/10.1371/journal.pone.0210869)

A. J. Fathima, G. Murugaboopathi, P. Selvam, Curr. Bioinform. 13 (2018) 606 (https://doi.org/10.2174/1574893613666180118105659)

A. Mukhametov, E. I. Newhouse, N. A. Aziz, J. A. Saito, M. Alam, J. Mol. Graph. Model. 52 (2014) 103 (https://doi.org/10.1016/j.jmgm.2014.06.008)

F. A. D. M. Opo, M. M. Rahman, F. Ahammad, I. Ahmed, M. A. Bhuiyan, A. M. Asiri, Sci. Rep. 11 (2021) 4049 (https://doi.org/10.1038/s41598-021-83626-x)

A. Fornili, F. Autore, N. Chakroun, P. Martinez, F. Fraternali, Computational Drug Discovery and Design, Springer, New York, 2011, p. 375 (https://doi.org/10.1007/978-1-61779-465-0_23)

M. Shahbaaz, A. Nkaule, A. Christoffels, Sci. Rep. 9 (2019) 4405 (https://doi.org/10.1038/s41598-019-40621-7)

F. Ghasemi, A. Zomorodipour, A. A. Karkhane, M. R. Khorramizadeh, J. Mol. Graph. Model 68 (2016) 39 (https://doi.org/10.1016/j.jmgm.2016.05.011)

H. Wu, S. Bock, M. Snitko, T. Berger, T. Weidner, S. Holloway, M. Kanitz, W. E. Diederich, H. Steuber, C. Walter, D. Hofmann, B. Weißbrich, R. Spannaus, E. G. Acosta, R. Bartenschlager, B. Engels, T. Schirmeister, J. Bodem, Antimicrob. Agents Chemother. 59 (2015) 1100 (https://doi.org/10.1128/AAC.03543-14)

R. A. Costa, J. N. Cruz, F. C. A. Nascimento, S. G. Silva, S. O. Silva, M. C. Martelli, S. M. L. Carvalho, C. B. R. Santos, A. M. J. C. Neto, D. S. B. Brasil, Med. Chem. Res. 28 (2019) 246 (https://doi.org/10.1007/s00044-018-2280-z)

B. Millies, F. von Hammerstein, A. Gellert, S. Hammerschmidt, F. Barthels, U. Göppel, M. Immerheiser, F. Elgner, N. Jung, M. Basic, C. Kersten, W. Kiefer, J. Bodem, E. Hildt, M. Windbergs, U. A. Hellmich, T. Schirmeister, J. Med. Chem. 62 (2019) 11359 (https://doi.org/10.1021/acs.jmedchem.9b01697)

R. Othman, T. S. Kiat, N. Khalid, R. Yusof, E. Irene Newhouse, J. S. Newhouse, M. Alam, N. A. Rahman, J. Chem. Inf. Model. 48 (2008) 1582 (https://doi.org/10.1021/ci700388k)

D. Popovic I. Djordjevic, J. Serb. Chem. Soc. 85 (2020) 1429 (https://doi.org/10.2298/JSC200720047P)

D. M. Popović A. A. Stuchebrukhov, J. Am. Chem. Soc. 126 (2004) 1858 (https://doi.org/10.1021/ja038267w).

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.