Tuning the copper cluster´s size on HOPG by electrodeposition from perchlorate aqueous solutions. An AFM study

Diana Elizabeth Garcia-Rodriguez, Clara Hilda Rios-Reyes, Luis Humberto Mendoza-Huizar

Abstract


In this work, we report the electrochemical synthesis of nanometric copper clusters smaller than 3 nm of height and 14.3 nm of diameter from perchlorate solutions. From the number of copper clusters counted directly from the AFM images, it was possible to derive an equation, which is able to predict the number of clusters formed in function on the applied potential. Also, qualitative AFM images were simulated employing a spreadsheet and the freeware ImageJ, the results obtained show concordance with the experimental AFM images.


Keywords


copper; nanocluster; instantaneous nucleation; potentiostatic; AFM

Full Text:

PDF (1,922 kB)

References


H.-S. Kim, Sanjay, R. Dhage, D.-E. Shim, H Thomas Hahn, Appl Phys A 97 (2009) 791–798 (http://dx.doi.org/10.1007/s00339-009-5360-6)

T. Yonezawa, H. Tsukamoto, M. T. Nguyen, Adv. Powder Technol. 28 (2017) 1966–1971 (http://dx.doi.org/10.1016/j.apt.2017.05.006)

H. Heli, M. Hajjizadeh, A. Jabbari, A. A. Moosavi-Movahedi, Biosens. Bioelectron. 24 (2009) 2328–2333 (http://dx.doi.org/10.1016/J.BIOS.2008.10.036)

V. Mani, R. Devasenathipathy, S.-M. Chen, S.-F. Wang, P. Devi, Y. Tai, Electrochim. Acta 176 (2015) 804–810 (http://dx.doi.org/10.1016/J.ELECTACTA.2015.07.098)

M. El Zowalaty, N. A. Ibrahim, M. Salama, K. Shameli, M. Usman, N. Zainuddin, Int. J. Nanomedicine 8 (2013) 4467–4479 (http://dx.doi.org/10.2147/IJN.S50837)

O. Mondal, A. Datta, D. Chakravorty, M. Pal, MRS Commun. 3 (2013) 91–95 (http://dx.doi.org/10.1557/mrc.2013.13)

T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc, M. C. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2011) 1–6 (http://dx.doi.org/10.1088/2043-6262/2/1/015009)

C. Liu, B. Yang, E. Tyo, S. Seifert, J. DeBartolo, B. von Issendorff, P. Zapol, S. Vajda, L. A. Curtiss, J. Am. Chem. Soc. 137 (2015) 8676–8679 (http://dx.doi.org/10.1021/jacs.5b03668)

C. Wu, B. P. Mosher, T. Zeng, J. Nanoparticle Res. 8 (2006) 965–969 (http://dx.doi.org/10.1007/s11051-005-9065-2)

H.-X. Zhang, U. Siegert, R. Liu, W.-B. Cai, Nanoscale Res. Lett. 4 (2009) 705–708 (http://dx.doi.org/10.1007/s11671-009-9301-2)

X. Cheng, X. Zhang, H. Yin, A. Wang, Y. Xu, Appl. Surf. Sci. 253 (2006) 2727–2732 (http://dx.doi.org/10.1016/j.apsusc.2006.05.125)

W. Yu, H. Xie, L. Chen, Y. Li, C. Zhang, Nanoscale Res. Lett. 4 (2009) 465–470 (http://dx.doi.org/10.1007/s11671-009-9264-3)

M. Salavati-Niasari, F. Davar, Mater. Lett. 63 (2009) 441–443 (http://dx.doi.org/10.1016/J.MATLET.2008.11.023)

K. Woo, D. Kim, J. S. Kim, S. Lim, J. Moon, Langmuir 25 (2009) 429–433 (http://dx.doi.org/10.1021/la802182y)

B. K. Park, D. Kim, S. Jeong, J. Moon, J. S. Kim, Thin Solid Films 515 (2007) 7706–7711 (http://dx.doi.org/10.1016/J.TSF.2006.11.142)

R. M. Tilaki, A. Iraji zad, S. M. Mahdavi, Appl. Phys. A 88 (2007) 415–419 (http://dx.doi.org/10.1007/s00339-007-4000-2)

K. Mallick, M. J. Witcomb, M. S. Scurrell, Eur. Polym. J. 42 (2006) 670–675 (http://dx.doi.org/10.1016/J.EURPOLYMJ.2005.09.020).

S. Mondal, S. R. Bhattacharyya, AIP Conf. Proc. 1447 (2012) 737–738 (http://dx.doi.org/10.1063/1.4710214)

D. E. García-Rodríguez, C. H. Mendoza-Huizar, Luis Humberto, Rios-Reyes, M. A. Alatorre-Ordaz, Química, Quim. Nov. 35 (2012) 699–704.

A. Han, Y. Yang, Q. Zhang, Q. Tu, G. Fang, J. Liu, S. Wang, R. Li, J. Electroanal. Chem. 795 (2017) 116–122 (http://dx.doi.org/10.1016/j.jelechem.2017.04.058)

L. Huang, E. S. Lee, K. B. Kim, Colloids Surfaces A Physicochem. Eng. Asp. 262 (2005) 125–131 (http://dx.doi.org/10.1016/j.colsurfa.2005.03.023)

C. J. Yang, F. H. Lu, Langmuir 29 (2013) 16025–16033 (http://dx.doi.org/10.1021/la403719c)

Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chemie Int. Ed. 48 (2009) 60–103 (http://dx.doi.org/10.1002/anie.200802248)

I. Haas, S. Shanmugam, A. Gedanken, J. Phys. Chem. B 110 (2006) 16947–16952 (http://dx.doi.org/10.1021/JP064216K)

M. J. Siegfried, K.-S. Choi, Adv. Mater. 16 (2004) 1743–1746 (http://dx.doi.org/10.1002/adma.200400177)

A. Radi, D. Pradhan, Y. Sohn, K. T. Leung, ACS Nano 4 (2010) 1553–1560 (http://dx.doi.org/10.1021/nn100023h)

X. J. Zhou, A. J. Harmer, N. F. Heinig, K. T. Leung, Langmuir 20 (2004) 5109–5113 (http://dx.doi.org/10.1021/LA0497301)

R. Bakthavatsalam, S. Ghosh, R. K. Biswas, A. Saxena, A. Raja, M. O. Thotiyl, S. Wadhai, A. G. Banpurkar, J. Kundu, RSC Adv. 6 (2016) 8416–8430 (http://dx.doi.org/10.1039/C5RA22683J)

X.-J. Huang, O. Yarimaga, J.-H. Kim, Y.-K. Choi, J. Mater. Chem. 19 (2009) 478–483 (http://dx.doi.org/10.1039/B816835K)

M. Raja, J. Subha, F. B. Ali, S. H. Ryu, Mater. Manuf. Process. 23 (2008) 782–785 (http://dx.doi.org/10.1080/10426910802382080)

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nat. Methods 9 (2012) 671–675 (http://dx.doi.org/10.1038/nmeth.2089)

E. Mattsson, J. O. Bockris, Trans. Faraday Soc. 55 (1959) 1586–1601 (http://dx.doi.org/10.1039/tf9595501586)

A. Milchev, T. Zapryanova, Electrochim. Acta 51 (2006) 4916–4921 (http://dx.doi.org/10.1016/J.ELECTACTA.2006.01.030)

A. Milchev, T. Zapryanova, Electrochim. Acta 51 (2006) 2926–2933 (http://dx.doi.org/10.1016/J.ELECTACTA.2005.08.045)

M. Rivera, C. H. Rios-Reyes, L. H. Mendoza-Huizar, J. Magn. Magn. Mater. 323 (2011) 997–1000 (http://dx.doi.org/10.1016/J.JMMM.2010.11.088)

B. Scharifker, G. Hills, Electrochim. Acta 28 (1983) 879–889 (http://dx.doi.org/10.1016/0013-4686(83)85163-9)

B. R. Scharifker, J. Mostany, J. Electroanal. Chem 177 (1984) 13–23 (https://doi.org/10.1016/0022-0728(84)80207-7)

B. R. Scharifker, J. Mostany, Electrochemical Nucleation and Growth, in M. Bard, A. J., Stratmann (Ed.), Encycl. Electrochem., First, Wiley-VCH, Germany, 2007, pp. 512–539 (http://dx.doi.org/10.1002/9783527610426.bard020503)

I. Horcas, R. Fernández, Rev. Sci. Instrument. 78 (2007) 013705-1 - 013705-8 (https://doi.org/10.1063/1.2432410)

D. Nečas, P. Klapetek, Cent. Eur. J. Phys. 10 (2012) 181–188 (https://doi.org/10.2478/s11534-011-0096-2)

M. Tomellini, M. Fanfoni, Phys. Rev. B 55 (1997) 14071–14073 (http://dx.doi.org/10.1103/PhysRevB.55.14071).




DOI: https://doi.org/10.2298/JSC190123054G

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)