The reactivity of dopamine precursors and metabolites towards ABTS• –: An experimental and theoretical study

Dušan Dimić, Dejan Milenković, Zoran Markovic, Jasmina Dimitrić Marković

Abstract


The antiradical activity of l-3,4-dihydroxyphenylalanine (l-DOPA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid and tyrosine towards 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt radi­cal (ABTS·-) was investigated experimentally and theoretically by UV–Vis spectro­scopy and the DFT theory. The importance of the catechol moiety for this reaction was proven due to the formation of intramolecular hydrogen bond in the formed anions and radicals. The results indicated l-DOPA and DOPAC were more potent radical scavengers than homovanillic acid and tyrosine just because of intramolecular hydrogen bond formation. Based on experimental spectra, it was proved that electron transfer led to the reduction of ABTS·-. The values of thermodynamic parameters were used to predict the preferred mech­anism. The reaction rates were calculated for the electron transfer processes and it was shown that these were both kinetically and thermodynamically driven processes. Based on the reaction rate values, thermodynamic para­meters, and present species, as determined by electronic spectra, it was con­cluded that single proton loss electron transfer (SPLET) is the dominant react­ion mechanism in the investigated system.


Keywords


antioxidant activity; UV–Vis spectroscopy; DFT; radicals

Full Text:

PDF (2,258 kB)

References


B. Halliwell, J. M. C. Gutteridge, Free Radicals in Biology and Medicine, 3rd ed., Clarendon Press, Oxford, 1999 (https://doi.org/10.1093/acprof:oso/9780198717478.001.0001)

T. L. Lemke, D. A. Williams, V. F. Roche, S. W. Zito, Foye’s principles of medicinal chemistry, Wolters Kluwer Health/Lippincott Williams & Wilkins, 2012 (ISBN 9781451181135)

J. Smythies, Antioxid. Redox Signal. 2 (2000) 575 (https://doi.org/10.1089/15230860050192332)

O. Hornykiewicz, Mov. Disord. 17 (2002) 501 (https://doi.org/10.1002/mds.10115)

R. M. Berman, M. Narasimhan, H. L. Miller, A. Anand, A. Cappiello, D. A. Oren, G. R. Heninger, D. S. Charney, Arch. Gen. Psychiatry 56 (1999) 395 (https://doi.org/10.1001/archpsyc.56.5.395)

L. Pauling, Science 160 (1968) 265 (https://doi.org/10.1126/science.160.3825.265)

D. Dimić, D. Milenković, J. Dimitrić Marković, Z. Marković, Phys. Chem. Chem. Phys. 128 (2017) 16655 (https://doi.org/10.1039/C7CP01716B)

R. L. Prior, X. Wu, K. Schaich, J. Agric. Food Chem. 53 (2005) 4290 (https://doi.org/10.1021/jf0502698)

R. Apak, M. Özyürek, K. Güçlü, E. Çapanoʇlu, J. Agric. Food Chem. 64 (2016) 1028 (https://doi.org/10.1021/acs.jafc.5b04743)

N. J. Christensen, K. P. Kepp, J. Mol. Catal., B: Enzym. 100 (2014) 68 (https://doi.org/10.1016/j.molcatb.2013.11.017)

A. M. Campos, E. A. Lissi, Int. J. Chem. Kin. 29 (1997) 219 (https://doi.org/10.1002/(SICI)1097-4601(1997)29:3<219::AID-KIN9>3.0.CO;2-X)

X. Tian, K. M. Schaich, J. Agric. Food Chem. 61 (2013) 5511 (https://doi.org/10.1021/jf4010725)

D. Dimić, D. Milenković, J. D. Marković, Z. Marković, Mol. Phys. (2018) 1166 (https://doi.org/10.1080/00268976.2017.1414967)

C. Iuga, J. R. Alvarez-Idaboy, A. Vivier-Bunge, J. Phys. Chem., B 115 (2011) 12234 (https://doi.org/10.1021/jp206347u)

R. Álvarez-Diduk, A. Galano, J. Phys. Chem., B 119 (2015) 3479 (https://doi.org/10.1021/acs.jpcb.5b00052)

C. Sârbu, D. Casoni, Open Chem. 11 (2013) 679 (https://doi.org/10.2478/s11532-013-0210-y)

A. Kladna, P. Berczynski, I. Kruk, T. Michalska, A.-E. Hy, Luminescence 28 (2013) 450 (https://doi.org/10.1002/bio.2475)

İ. Gülçin, Chem. Biol. Interact. 179 (2009) 71 (https://doi.org/10.1016/j.cbi.2008.09.023)

A. Galano, J. Mex. Chem. Soc. 59 (2015) 231 (http://dx.doi.org/10.29356/jmcs.v59i4.81)

R. Re, N. Pellegrini, A. Proteggebte, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26 (1999) 1231 (https://doi.org/10.1016/S0891-5849(98)00315-3)

T. H. Dunning, J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1063/1.456153)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2007) 215 (https://doi.org/10.1007/s00214-007-0310-x)

Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2009 (https://gaussian.com/g09_c01/)

A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem., B 113 (2009) 6378 (https://doi.org/10.1021/jp810292n)

J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 102 (1980) 7211 (https://doi.org/10.1021/ja00544a007)

NBO 6.0., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2009

R. Marcus, Rev. Mod. Phys. 65 (1993) 599 (https://doi.org/10.1103/RevModPhys.65.599)

F. C. Collins, G. E. Kimball, J. Colloid Sci. 4 (1949) 425 (https://doi.org/10.1016/0095-8522(49)90023-9)

R. B. Walker, J. D. Everette, J. Agric. Food Chem. 57 (2009) 1155 (https://doi.org/10.1021/jf8026765)

S. L. Scott, W. J. Chen, A. Bakac, J. H. Espenson, J. Phys. Chem. 97 (1993) 6710 (https://doi.org/10.1021/j100127a022)

T. Miura, S. Muraoka, T. Ogiso, Biochem. Pharmacol. 55 (1998) 2001 (https://doi.org/10.1016/S0006-2952(98)00075-6)

F.-D. Munteanu, C. Basto, G. M. Gübitz, A. Cavaco-Paulo, Ultrason. Sonochem. 14 (2007) 363 (https://doi.org/10.1016/j.ultsonch.2006.07.008)

R. Apak, M. Özyürek, K. Güçlü, E. Çapanoʇlu, J. Agric. Food Chem. 64 (2016) 997 (https://doi.org/10.1021/acs.jafc.5b04739)

O. Erel, Clin. Biochem. 37 (2004) 277 (https://doi.org/10.1016/j.clinbiochem.2003.11.015)

Z. Marković, J. Tošović, D. Milenković, S. Marković, Comput. Theor. Chem. 1077 (2016) 11 (https://doi.org/10.1016/j.comptc.2015.09.007)

N. Nenadis, L. F. Wang, M. Tsimidou, H. Y. Zhang, J. Agric. Food Chem. 52 (2004) 4669 (https://doi.org/10.1021/jf0400056).




DOI: https://doi.org/10.2298/JSC190430050D

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)