The reactivity of dopamine precursors and metabolites towards ABTS• –: An experimental and theoretical study

Main Article Content

Dušan Dimić
Dejan Milenković
Zoran Markovic
Jasmina Dimitrić Marković

Abstract

The antiradical activity of l-3,4-dihydroxyphenylalanine (l-DOPA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid and tyrosine towards 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt radi­cal (ABTS·-) was investigated experimentally and theoretically by UV–Vis spectro­scopy and the DFT theory. The importance of the catechol moiety for this reaction was proven due to the formation of intramolecular hydrogen bond in the formed anions and radicals. The results indicated l-DOPA and DOPAC were more potent radical scavengers than homovanillic acid and tyrosine just because of intramolecular hydrogen bond formation. Based on experimental spectra, it was proved that electron transfer led to the reduction of ABTS·-. The values of thermodynamic parameters were used to predict the preferred mech­anism. The reaction rates were calculated for the electron transfer processes and it was shown that these were both kinetically and thermodynamically driven processes. Based on the reaction rate values, thermodynamic para­meters, and present species, as determined by electronic spectra, it was con­cluded that single proton loss electron transfer (SPLET) is the dominant react­ion mechanism in the investigated system.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
D. Dimić, D. Milenković, Z. Markovic, and J. Dimitrić Marković, “The reactivity of dopamine precursors and metabolites towards ABTS• –: An experimental and theoretical study”, J. Serb. Chem. Soc., vol. 84, no. 8, pp. 877–889, Aug. 2019.
Section
Special Issue Devoted to Prof. emeritus Miljenko Perić
Author Biography

Zoran Markovic, Bioengineergin Research and Development Center, Prvoslava Stojanovića 6, 34000 Kragujevac and Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar

Department of Chemical-Technological Sciences

Professor

 

References

B. Halliwell, J. M. C. Gutteridge, Free Radicals in Biology and Medicine, 3rd ed., Clarendon Press, Oxford, 1999 (https://doi.org/10.1093/acprof:oso/9780198717478.001.0001)

T. L. Lemke, D. A. Williams, V. F. Roche, S. W. Zito, Foyes principles of medicinal chemistry, Wolters Kluwer Health/Lippincott Williams & Wilkins, 2012 (ISBN 9781451181135)

J. Smythies, Antioxid. Redox Signal. 2 (2000) 575 (https://doi.org/10.1089/15230860050192332)

O. Hornykiewicz, Mov. Disord. 17 (2002) 501 (https://doi.org/10.1002/mds.10115)

R. M. Berman, M. Narasimhan, H. L. Miller, A. Anand, A. Cappiello, D. A. Oren, G. R. Heninger, D. S. Charney, Arch. Gen. Psychiatry 56 (1999) 395 (https://doi.org/10.1001/archpsyc.56.5.395)

L. Pauling, Science 160 (1968) 265 (https://doi.org/10.1126/science.160.3825.265)

D. Dimić, D. Milenković, J. Dimitrić Marković, Z. Marković, Phys. Chem. Chem. Phys. 128 (2017) 16655 (https://doi.org/10.1039/C7CP01716B)

R. L. Prior, X. Wu, K. Schaich, J. Agric. Food Chem. 53 (2005) 4290 (https://doi.org/10.1021/jf0502698)

R. Apak, M. Özyürek, K. Güçlü, E. Çapanoʇlu, J. Agric. Food Chem. 64 (2016) 1028 (https://doi.org/10.1021/acs.jafc.5b04743)

N. J. Christensen, K. P. Kepp, J. Mol. Catal., B: Enzym. 100 (2014) 68 (https://doi.org/10.1016/j.molcatb.2013.11.017)

A. M. Campos, E. A. Lissi, Int. J. Chem. Kin. 29 (1997) 219 (https://doi.org/10.1002/(SICI)1097-4601(1997)29:3<219::AID-KIN9>3.0.CO;2-X)

X. Tian, K. M. Schaich, J. Agric. Food Chem. 61 (2013) 5511 (https://doi.org/10.1021/jf4010725)

D. Dimić, D. Milenković, J. D. Marković, Z. Marković, Mol. Phys. (2018) 1166 (https://doi.org/10.1080/00268976.2017.1414967)

C. Iuga, J. R. Alvarez-Idaboy, A. Vivier-Bunge, J. Phys. Chem., B 115 (2011) 12234 (https://doi.org/10.1021/jp206347u)

R. Álvarez-Diduk, A. Galano, J. Phys. Chem., B 119 (2015) 3479 (https://doi.org/10.1021/acs.jpcb.5b00052)

C. Sârbu, D. Casoni, Open Chem. 11 (2013) 679 (https://doi.org/10.2478/s11532-013-0210-y)

A. Kladna, P. Berczynski, I. Kruk, T. Michalska, A.-E. Hy, Luminescence 28 (2013) 450 (https://doi.org/10.1002/bio.2475)

İ. Gülçin, Chem. Biol. Interact. 179 (2009) 71 (https://doi.org/10.1016/j.cbi.2008.09.023)

A. Galano, J. Mex. Chem. Soc. 59 (2015) 231 (http://dx.doi.org/10.29356/jmcs.v59i4.81)

R. Re, N. Pellegrini, A. Proteggebte, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26 (1999) 1231 (https://doi.org/10.1016/S0891-5849(98)00315-3)

T. H. Dunning, J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1063/1.456153)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2007) 215 (https://doi.org/10.1007/s00214-007-0310-x)

Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2009 (https://gaussian.com/g09_c01/)

A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem., B 113 (2009) 6378 (https://doi.org/10.1021/jp810292n)

J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 102 (1980) 7211 (https://doi.org/10.1021/ja00544a007)

NBO 6.0., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2009

R. Marcus, Rev. Mod. Phys. 65 (1993) 599 (https://doi.org/10.1103/RevModPhys.65.599)

F. C. Collins, G. E. Kimball, J. Colloid Sci. 4 (1949) 425 (https://doi.org/10.1016/0095-8522(49)90023-9)

R. B. Walker, J. D. Everette, J. Agric. Food Chem. 57 (2009) 1155 (https://doi.org/10.1021/jf8026765)

S. L. Scott, W. J. Chen, A. Bakac, J. H. Espenson, J. Phys. Chem. 97 (1993) 6710 (https://doi.org/10.1021/j100127a022)

T. Miura, S. Muraoka, T. Ogiso, Biochem. Pharmacol. 55 (1998) 2001 (https://doi.org/10.1016/S0006-2952(98)00075-6)

F.-D. Munteanu, C. Basto, G. M. Gübitz, A. Cavaco-Paulo, Ultrason. Sonochem. 14 (2007) 363 (https://doi.org/10.1016/j.ultsonch.2006.07.008)

R. Apak, M. Özyürek, K. Güçlü, E. Çapanoʇlu, J. Agric. Food Chem. 64 (2016) 997 (https://doi.org/10.1021/acs.jafc.5b04739)

O. Erel, Clin. Biochem. 37 (2004) 277 (https://doi.org/10.1016/j.clinbiochem.2003.11.015)

Z. Marković, J. Tošović, D. Milenković, S. Marković, Comput. Theor. Chem. 1077 (2016) 11 (https://doi.org/10.1016/j.comptc.2015.09.007)

N. Nenadis, L. F. Wang, M. Tsimidou, H. Y. Zhang, J. Agric. Food Chem. 52 (2004) 4669 (https://doi.org/10.1021/jf0400056).