Maltose-mediated, long-term stabilization of freeze- and spray-dried forms of bovine and porcine hemoglobin

Main Article Content

Ivana Drvenica
Ana Stančić
Ana Kalušević
Smilja Marković
Jelena Dragišić Maksimović
Viktor Nedović
Branko Bugarski
Vesna Ilić

Abstract

Slaughterhouse blood represents a valuable source of hemoglobin, which can be used in the production of heme-iron based supplements for the prevention/treatment of iron-deficiency anemia. In order to obtain a stable solid-state formulation, the effect of maltose addition (30 %) on the stability and storage of bovine and porcine hemoglobin in powders obtained by spray- and freeze-drying (without maltose: Hb; with maltose: HbM) were inves­tigated. Differential scanning calorimetry of spray- and freeze-dried powders indicated satisfying quality of the formulation prepared with maltose on dissol­ving back into solution. After two-year storage at room temperature (20±5 °C) in solid forms, protected from moisture and light, rehydrated spray- and freeze-dried HbM were red, while Hb were brown. Dynamic light scattering showed the presence of native hemoglobin monomers in rehydrated spray- and freeze-dried HbM, but their agglomerates in Hb samples. UV–Vis spectrophotometry confirmed an absence of significant hemoglobin denaturation and methemoglobin formation in HbM freeze-dried powders. In spray-dried HbM, an inc­reased level of methemoglobin was detected. The results confirmed the stabil­izing effect of maltose, and suggested its use in the production of long-term stable solid-state formulations of hemoglobin, along with drying processes optimization.

Article Details

How to Cite
[1]
I. Drvenica, “Maltose-mediated, long-term stabilization of freeze- and spray-dried forms of bovine and porcine hemoglobin”, J. Serb. Chem. Soc., vol. 84, no. 10, pp. 1105–1117, Nov. 2019.
Section
Biochemistry & Biotechnology

References

C. Camaschella, N. Engl. J. Med. 372 (2015) 1832 (https://www.nejm.org/doi/10.1056/NEJMra1401038)

L. E. Murray-Kolbe, J. Beard Iron. In: Encyclopedia of Dietary Supplements, P.M. Coates, J.M. Betz, M.R. Blackman, G. M. Cragg, M. Levine, J. Moss, J.D. White, Eds. 2nd ed. Informa Healthcare, London and New York, 2010, p 432

R. Hurrell, I. Egli, Am. J. Clin. Nutr. 91 (2010) 1461S (https://doi.org/10.3945/ajcn.2010.28674F)

R. de Olivieira, First Virtual Global Conference on Organic Beef Cattle Production September 02 to October 15, 2002 https://www.cpap.embrapa.br/agencia/congressovirtual/pdf/ingles/02en03.pdf

B. Nowak, T. von Mueffling, J. Food. Prot. 69 (2006) 2183 (https://jfoodprotection.org/doi/pdfplus/10.4315/0362-028X-69.9.2183)

N. C. Jain, Essentials of Veterinary Hematology, Lea & Febiger Philadelphia. 1993

R. Stojanović, V. Ilić, V. Manojlović, D. Bugarski, M. Dević, B. Bugarski, Appl. Biochem. Biotechnol. 166 (2012) 1491 (https://doi.org/10.1007/s12010-012-9543-9)

F. Toldrá, M. C. Aristoy, L. Mora, M. Reig, Meat Sci. 92 (2012) 290 (https://doi.org/10.1016/j.meatsci.2012.04.004)

S. Lynch, A. Mullen, E. O'Neill, C. García, Comp. Rev. Food Sci. Food Saf. 16 (2017) 330 (https://doi.org/10.1111/1541-4337.12254)

N. Tang, L. Chen, H. Zhuang, Food Funct. 5 (2014) 390 (http://dx.doi.org/10.1039/C3FO60292C)

G. González-Rosendo, J. Polo, J. Rodríguez-Jerez, R. Puga-Díaz, E. Reyes-Navarrete, A. Quintero-Gutiérrez, J. Food Sci. 75 (2010) H73 (https://doi.org/10.1111/j.1750-3841.2010.01523.x)

M. Hoppe, B. Brün, M. Larsson, L. Moraeus, L. Hulthén, Nutrition. 29 (2013) 89 (https://doi.org/10.1016/j.nut.2012.04.013)

F. Pizarro, M. Olivares, C. Valenzuela, A. Brito, V. Weinborn, S. Flores, M. Arredondo Food Chem. 196 (2016) 733 (https://doi.org/10.1016/j.foodchem.2015.10.012)

D. Poncelet, A. Picot, S. El Mafadi, Capsulæ. Innov. Food Technol. 22 (2011) 32 (http://www.capsulae.com/media/copy_inftissuefeb2011__029884800_1734_06062011__094901400_1554_12022014.pdf)

B. Kerwin, M. Heller, S. Levin, T. Randolph, J. Pharm. Sci. 87 (1998) 1062 (https://doi.org/10.1021/js980140v)

M.C. Heller, J.F. Carpenter, T.W. Randolph, Biotechnol. Prog. 13 (1997) 590 (https://doi.org/10.1021/bp970081b)

S. Timasheff, Biochemistry. 41 (2002) 13473 (https://doi.org/10.1021/bi020316e)

N. Soltanizadeh, L. Mirmoghtadaie, F. Nejati, L. Najafabadi, M. Heshmati, M. Jafari, Comp. Rev. Food Sci. Food Saf. 13 (2014) 860 (https://doi.org/10.1111/1541-4337.12089)

S. Ajito, H. Iwase, S. I. Takata, M. Hirai, J. Phys. Chem. B. 122 (2018) 8685 (https://pubs.acs.org/doi/10.1021/acs.jpcb.8b06572)

J. Kaushik, R. Bhat, J. Biol. Chem. 278 (2003) 26458 (https://doi.org/10.1074/jbc.m300815200)

J. Chung, S. Takeoka, H. Nishide, E. Tsuchida, Polymers Adv. Technol. 5 (1994) 385 (https://doi.org/10.1002/pat.1994.220050704)

S. Sastry, J. Nyshadham, J. Fix, Pharm. Sci. Technol. Today 3 (2000) 138 (https://doi.org/10.1016/s1461-5347(00)00247-9)

I. Kostić, V. Ilić, V. Đorđević, K. Bukara, S. Mojsilović, V. Nedović, D. Bugarski, Ð. Veljović, D. Mišić, B. Bugarski, Colloid. Surf. B: Biointerfaces 122 (2014) 250 (https://doi.org/10.1016/j.colsurfb.2014.06.043)

P. Salvador, M. Toldrà, D. Parés, C. Carretero, E. Saguer, Meat Sci. 83 (2009) 328 (https://doi.org/10.1016/j.meatsci.2009.06.001)

C.M. Johnson, Arch. Biochem. Biophys. 531 (2013) 100 (http://dx.doi.org/10.1016/j.abb.2012.09.008)

H. Sakai, Y. Masada, S. Takeoka, E.Tsuchida, J. Biochem. 131 (2002) 611 (https://www.jstage.jst.go.jp/article/biochemistry1922/131/4/131_4_611/_pdf)

H. Shirahama, K. Suzuki, T. Suzawa, J. Colloid. Inter. Sci. 129 (1989) 483 (https://doi.org/10.1016/0021-9797(89)90462-1)

E. Domingues-Hamdi, C. Vasseur, J.B. Fournier, M. C. Marden, H. Wajcman, V. Baudin-Creuza, PLoS One. 9 (2014) e111395 (https://doi.org/10.1371/journal.pone.0111395)

D. Guo, R. Liu, J. Biochem. Mol. Toxicol. 31 (2017) e21953 (https://doi.org/10.1002/jbt.21953)

A.D. Laurent, X. Assfeld, Interdiscip. Sci. Comput. Life Sci. 2 (2010) 38 (https://doi.org/10.1007/s12539-010-0084-z)

S. M. Sherif, E. I. Amal, Roman. J. Biophys. 20 (2010) 269 (https://www.rjb.ro/articles/286/art08Sherif.pdf)

W. G. Zijlstra, A. A. Buursma, W. P. Meeuwsen-van der Roest, Clin. Chem. 37 (1991) 1633 (http://clinchem.aaccjnls.org/content/37/9/1633)

A. Abdul‐Fattah, D. Kalonia, M. Pikal, J. Pharm. Sci. 96 (2007) 1886 (https://doi.org/10.1002/jps.20842)

P. Labrude, M. Rasolomanana, C. Vigneron, C. Thirion, B. Chaillot, J. Pharm. Sci. 78 (1989) 223 (https://doi.org/10.1002/jps.2600780311)

B. Wang, M.T. Cicerone, Y. Aso, M. J. Pikal, J. Pharm. Sci. 99 (2010) 683 (https://doi.org/10.1002/jps.21960)

L. Chang, D. Shepherd, J. Sun, D. Ouellett, K.L. Grant, X.C. Tang, M.J. Pikal, J. Pharm. Sci. 94 (2005) 1427 (https://doi.org/10.1002/jps.20363)

K. Kawai, T. Hagiwara, R. Takai, T. Suzuki, Pharm. Res. 22 (2005) 490 (https://doi.org/10.1007/s11095-004-1887-6)

I. Koshiyama, M. Hamano, D. Fukushima, Food Chem. 6 (1981) 309 (https://doi.org/10.1016/0308-8146(81)90004-2)

F. He, S. Hogan, R.F. Latypov, L.O. Narhi, V.I. Razinkov, J. Pharm. Sci. 99 (2010) 1707 (https://doi.org/10.1002/jps.21955)

H. Li, Y. Chen, Z. Li, X. Li, Q. Jin, J. Ji, Biomacromolecules. 19 (2018) 2007 (https://doi.org/10.1021/acs.biomac.8b00241)

E. K. Hanson, J. Ballantyne, Plos One 5 (2010) e12830 (https://doi.org/10.1371/journal.pone.0012830)

C. Bonaventura, R. Henkens, A. I. Alayash, S. Banerjee, A. L. Crumbliss, Antioxid. Redox Signal. 18 (2013) 2298 (https://doi.org/10.1089/ars.2012.4947)

J. Carpenter, J. Crowe, Biochemistry. 28 (1989) 3916 (https://doi.org/10.1021/bi00435a044)

J. Sampedro, S. Uribe, Mol. Cell. Biochem. 256 (2004) (https://doi.org/10.1023/b:mcbi.0000009878.21929.eb)

Most read articles by the same author(s)