Influence of boron doping on characteristics of glucose based hydrothermal carbons Scientific paper

Main Article Content

Ana Kalijadis
https://orcid.org/0000-0002-6897-4691
Marina Maletić
https://orcid.org/0000-0002-4112-9316
Anđelika Bjelajac
https://orcid.org/0000-0001-5893-156X
Biljana Babić
https://orcid.org/0000-0002-6269-7822
Tamara Minović Arsić
https://orcid.org/0000-0002-2957-5372
Marija Vukčević
https://orcid.org/0000-0003-0416-0741

Abstract

In this study, the influence of boron doping on structural and surface properties of carbon material synthesized by hydrothermal method was investigated, and the obtained results were compared with the previously published influence that boron has on characteristics of carbonized boron-doped hydrothermal carbons (CHTCB). Hydrothermal carbons doped with boron (HTCB), were obtained by hydrothermal synthesis of glucose solution with the different nominal concentrations of boric acid. It was found that glucose based hydrothermal carbon does not have developed porosity, and the presence of boron in their structure has insignificant influence on it. On the contrary, additional carbonization increases the specific surface area of the undoped sample, while the increase in boron content drastically decreases specific surface area. Boron doping leads to a decrease in the amount of surface oxygen groups, for both, hydrothermally synthesized and additionally carbonized material. Raman analysis showed that boron content does not affect the structural arrangement of HTCB samples, and Raman structural parameters show higher degree of disorder, compared to the CHTCB samples. Comparison of structural and surface characteristics of hydrothermal carbons and carbonized materials contributes to the study of the so far, insufficiently clarified influence that boron incorporation has on the material characteristics.

Article Details

How to Cite
[1]
A. Kalijadis, M. Maletić, A. Bjelajac, B. Babić, T. Minović Arsić, and M. . Vukcevic, “Influence of boron doping on characteristics of glucose based hydrothermal carbons: Scientific paper”, J. Serb. Chem. Soc., Jan. 2022.
Section
Materials

References

M. W. Moon, H. Y. Kim, A. Wang, A. Vaziri, J. Nanomater. 2015 (2015) 916834 (http://dx.doi.org/10.1155/2015/916834)

A. Hirsch, The era of carbon allotropes, Nat. Mater. 9 (2010) 868 (https://doi.org/10.1038/nmat2885)

M. M. Titirici, M. Antonietti, Chem. Soc. Rev. 39 (2010) 103 (https://doi.org/10.1039/b819318p)

Y. Wang, L. Qiu, M. Zhu, G. Sun, T. Zhang, K Kang, Sci. Rep. 9 (2019) 5535 (https://doi.org/10.1038/s41598-019-38849-4)

P. Zhu, J. Liu, J. Ma, L. Li, X. Zhang, J. Biobased. Mater. Bio. 15 (2021) 97 (https://doi.org/10.1166/jbmb.2021.2030)

C. Falco, F. Perez Caballero, F. Babonneau, C. Gervais, G. Laurent, M. M. Titirici, N. Baccile, Langmuir 27 (2011) 14460 (https://doi.org/10.1021/la202361p)

M. M. Titirici, A. Thomas, M. Antonietti, New J. Chem. 31 (2007) 787 (https://doi.org/10.1039/b616045j)

X. Zhu, Y. Liu, F. Qian, S. Zhang, J. Chen, Energ. Fuel. 29 (2015) 5222 (https://doi.org/10.1021/acs.energyfuels.5b00512)

X. Sun, Y. Li, Angew. Chem. Int. Ed. 43 (2004) 597 (https://doi.org/10.1002/anie.200352386)

Y. Z. Jin, C. Gao, W. Kuang Hsu, Y. Zhu, A. Huczko, M. Bystrzejewski, M. Roe, C. Y. Lee, S. Acquah, H. Kroto, D. R. M. Walton, Carbon 43 (2005) 1944 (https://doi.org/10.1016/j.carbon.2005.03.002)

S. A. Nicolae, H. Au, P. Modugno, H. Luo, A. E. Szego, M. Qiao, L. Li, W. Yin, H. J. Heeres, N. Berge, M. M. Titirici, Green Chem. 22 (2020) 4747 (https://doi.org/10.1039/d0gc00998a)

A. Kalijadis, N. Gavrilov, B. Jokić, M. Gilić, A. Krstić, I. Pašti, B. Babić, Mater. Chem. Phys. 239 (2020) 122120 (https://doi.org/10.1016/j.matchemphys.2019.122120)

M. M. Titirici, R. J. White, C. Falcoa, M. Sevilla, Energy Environ. Sci. 5 (2012) 6796 (https://doi.org/10.1039/c2ee21166a)

Y. J. Lee, Y. Uchiyama, Lj. R. Radovic, Carbon 42 (2004) 2233 (https://doi.org/10.1016/j.carbon.2004.04.030)

X. Wu, Lj. R. Radovic, Carbon 43 (2005) 1768 (https://doi.org/10.1016/j.carbon.2005.02.029)

Y. J. Leea, H. J. Joo, Lj. R. Radovic, Carbon 41 (2003) 2591 (https://doi.org/10.1016/S0008-6223(03)00372-5)

J. S. Đorđević, A. M. Kalijadis, K. R. Kumrić, Z. M. Jovanović, Z. V. Laušević, T. M. Trtić-Petrović, Cent. Eur. J. Chem. 10 (2012) 1271 (https://doi.org/10.2478/s11532-012-0042-1)

S. Marinkovic, Substitutional solid solubility in carbon and graphite, in Chemistry and physics of carbon, P. A. Thrower, Ed., Marcel Dekker Inc., New York, 1984., p. 1

Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Q. Chen, Q. Meng, Electrochem. Commun. 9 (2007) 596 (https://doi.org/10.1016/j.elecom.2006.10.028)

A. Kalijadis, Z. Jovanović, M. Laušević, Z. Laušević, Carbon 49 (2011) 2671 (https://doi.org/10.1016/j.carbon.2011.02.054)

A. Kalijadis, Z. Jovanović, I. Cvijović-Alagić, Z. Laušević, Nucl. Instrum. Meth. B 316 (2013) 17 (http://dx.doi.org/10.1016/j.nimb.2013.08.030)

A. Kalijadis, J. Ðorđević, T. Trtić-Petrović, M. Vukčević, M. Popović, V. Maksimović, Z. Rakočević, Z. Laušević, Carbon 95 (2015) 42 (http://dx.doi.org/10.1016/j.carbon.2015.08.016)

C. Falco, N. Baccile, M. M. Titirici, Green Chem. 13 (2011) 3273 (http://dx.doi.org/10.1039/c1gc15742f)

J. A. Libra, K. S. Ro, C. Kammann, A. Funke, N. D. Berge, Y. Neubauer, M. M. Titirici, C. Fühner, O. Bens, J. Kern, K. H. Emmerich, Biofuels 2 (2011) 89 (http://dx.doi.org/10.4155/bfs.10.81)

A. D. Roberts, X. Li, H. Zhang, Chem. Soc. Rev. 43 (2014) 4341 (http://dx.doi.org/10.1039/c4cs00071d

P. Zhang, Z. A. Qiaoa, S. Dai, Chem. Commun. 51 (2015) 9246 (http://dx.doi.org/10.1039/c5cc01759a)

B. C. Lippens, B. G. Linsen, J. H. de Boer, J. Catalysis 3 (1964) 32 (https://doi.org/10.1016/0021-9517(64)90089-2)

A. M. Kalijadis, M. M. Vukčević, Z. M. Jovanović, Z. V. Laušević, M. D. Laušević, J. Serb. Chem. Soc. 76 (2011) 757 (http://dx.doi.org/10.2298/JSC091224056K)

M. M. Titirici, in Novel Carbon Adsorbents, J. M. D. Tascón, Ed., Elsevier, Oxford, 2012, p. 351 (http://dx.doi.org/10.1016/B978-0-08-097744-7.00012-0)

A. C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095 (https://doi.org/10.1103/PhysRevB.61.14095)

S. Urbonaite, L. Halldahl, G. Svensson, Carbon 46 (2008) 1942 (https://doi.org/10.1016/j.carbon.2008.08.004)

Z. Wang, H. Ogata, G. J. Hong Melvin, M. Obata, S. Morimoto, J. Ortiz-Medina, R. Cruz-Silva, M. Fujishige, K. Takeuchi, H. Muramatsu, T. Y. Kim, Y. A. Kim, T. Hayashi, M. Terrones, Y. Hashimoto, M. Endo, Carbon 121 (2017) 423 (http://dx.doi.org/10.1016/j.carbon.2017.06.003)

H. Fujimoto, Carbon 41 (2003) 1585 (http://dx.doi.org/10.1016/S0008-6223(03)00116-7)

Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, Z. Luo, Carbon 45 (2007) 1686 (http://dx.doi.org/10.1016/j.carbon.2007.03.038)

K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603 (https://doi.org/10.1351/pac198557040603)

S. E. Elaigwu, G. M. Greenway, Int. J. Ind. Chem. 7 (2016) 449 (http://dx.doi.org/10.1007/s40090-016-0081-0)

M. M. Titirici, M. Antonietti, N. Baccile, Green Chem. 10 (2008) 1204 (http://dx.doi.org/10.1039/b807009a)

M. Sevilla, A. B. Fuertes, Chem. Eur. J. 15 (2009) 4195 (http://dx.doi.org/10.1002/chem.200802097)

S. Karthikeyan, K. Viswanathan, R. Boopathy, P. Maharaja, G. Sekaran, J. Ind. Eng. Chem. 21 (2015) 942 (https://doi.org/10.1016/j.jiec.2014.04.036)

S. Kubo, I. Tan, R. J. White, M. Antonietti, M. M. Titirici, Chem. Mater. 22 (2010) 6590 (http://dx.doi.org/10.1021/cm102556h)

Y. Gao, X. Wang, J. Wang, X. Li, J. Cheng, H. Yang, H. Chen, Energy 58 (2013) 376 (http://dx.doi.org/10.1016/j.energy.2013.06.023)

Z. Zhang, K. Wang, J. D. Atkinson, X. Yan, X. Li, M. J. Rood, Z. Yan, J. Hazard. Mater. 229-230 (2012) 183 (http://dx.doi.org/10.1016/j.jhazmat.2012.05.094)

M. Zbair, M. Bottlinger, K. Ainassaari, S. Ojala, O. Stein, R. L. Keiski, M. Bensitel, R. Brahmi, Waste Biomass Valor. 11 (2020) 1565 (https://doi.org/10.1007/s12649-018-00554-0)

Lj. R. Radovic, M. Karra, K. Skokova, P. A. Thrower, Carbon 36 (1998) 1841 (https://doi.org/10.1016/S0008-6223(98)00156-0).

Most read articles by the same author(s)