Divergent synthesis and antitumour activity of novel conformationally constrained (–)-muricatacin analogues Scientific paper

Main Article Content

Slađana M. Stanisavljević
https://orcid.org/0000-0002-4766-9137
Bojana Srećo Zelenović
https://orcid.org/0000-0003-0216-2583
Mirjana Popsavin
https://orcid.org/0000-0002-0924-1041
Marko V. Rodić
https://orcid.org/0000-0002-4471-8001
Velimir Popsavin
https://orcid.org/0000-0001-9910-2987
Vesna V. Kojić
https://orcid.org/0000-0002-2399-0807

Abstract

Four novel conformationally restricted (–)-muricatacin analogues, bearing a methoxy group at the C-5 position and with an alkoxymethyl group аs the C-7 side chain, have been synthesised and their in vitro antiproliferative activity was evaluated against a panel of seven human tumour cell lines, as well as a single normal cell line. All analogues (912) showed diverse anti­pro­liferative effects against all tested human malignant cell lines, but were devoid of any significant cytotoxicity towards the normal foetal lung fibroblasts (MRC-5). A structure–activity relationship study reveals that the introduction of tetrahydrofuran ring, the replacement of C-8 methylene group in the side chain of muricatacin analogues with the O-8 ether functionality, as well as the length of side chain may be beneficial for the antiproliferative effects of these lactones. All novel analogues were more potent than lead compound, (–)-muri­catacin, against HL-60 cell line.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Stanisavljević, B. Srećo Zelenović, M. Popsavin, M. Rodić, V. Popsavin, and V. Kojić, “Divergent synthesis and antitumour activity of novel conformationally constrained (–)-muricatacin analogues: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 2, pp. 113–121, Nov. 2022.
Section
Organic Chemistry

Funding data

References

M. J. Rieser, J. F. Kozlowski, K. V. Wood, J. L. McLaughlin, Tetrahedron Lett. 32 (1991) 1137 (https://doi.org/10.1016/S0040-4039(00)92027-6)

C.-C. Liaw, F.-R. Chang, S.-L. Chen, C.-C. Wu, K.-H. Lee, Y. C. Wu, Bioorg. Med. Chem. 13 (2005) 4767 (https://doi.org/10.1016/j.bmc.2005.05.008)

A. Cavé, C. Chaboche, B. Figadère, J. C. Harmange, A. Laurens, J. F. Peyrat, M. Pichon, M. Szlosek, J. Cotte-Lafitte, A. M. Quéro, Eur. J. Med. Chem. 32 (1997) 617 (https://doi.org/10.1016/S0223-5234(97)83287-4)

M. Chandrasekhar, K. L. Chandra, V. K. Singh, ARKIVOC VII (2002) 34 (https://doi.org/10.3998/ark.5550190.0003.705)

K. J. Quinn, A. K. Isaacs, R. A. Arvary, Org. Lett. 6 (2004) 4143 (https://doi.org/10.1021/ol040047f)

B. Dhotare, A. Chattopadhyay, Tetrahedron Lett. 46 (2005) 3103 (https://doi.org/10.1016/j.tetlet.2005.03.002)

V. Popsavin, B. Srećo, G. Benedeković, M. Popsavin, J. Francuz, V. Kojić, G. Bogdanović, Bioorg. Med. Chem. Lett. 18 (2008) 5182 (https://doi.org/10.1016/j.bmcl.2008.08.097)

M. T. Barros, M. A. J. Charmier, C. D. Maycock, T. Michaud, Tetrahedron 65 (2009) 396 (https://doi.org/10.1016/j.tet.2008.10.020)

M. González, Z. Gándara, B. Covelo, G. Gómez, Y. Fall, Tetrahedron Lett. 52 (2011) 5983 (https://doi.org/10.1016/j.tetlet.2011.08.160)

Y.-F. Tsai, C.-C. Huang, S.-H. Lin, P.-M. Su, Y.-J. Chen, T.-Y. Wu, Heterocycles 85 (2012) 299 (https://doi.org/10.3987/COM-11-12397)

M. González, Z. Gándara, Z. Pazos, G. Gómez, Y. Fall, Synthesis (2013) 625 (https://doi.org/10.1055/s-0032-1318113)

S. Chatterjee, A. Manna, T. Bhaumik, Tetrahedron: Asymmetry 25 (2014) 1624 (https://doi.org/10.1016/j.tetasy.2014.11.001)

D. A. Chaudhari, A. B. Ingle, R. A. Fernandes, Tetrahedron: Asymmetry 27 (2016) 114 (https://doi.org/10.1016/j.tetasy.2016.01.003)

S. Yaragorla, R. Muthyala, ARKIVOC (2010) 178 (https://doi.org/10.3998/ark.5550190.0011.a15)

C. R. Reddy, D. Suman, N. N. Rao, Helv. Chim. Acta 98 (2015) 967 (https://doi.org/10.1002/hlca.201400356)

C. Cooze, A. Manchoju, S. V. Pansare, Synlett (2017) 2928 (https://doi.org/10.1055/s-0036-1590858)

S. H. Tsai, P. C. Hsieh, L. L. Wei, H. F. Chiu, Y. C. Wu, M. J. Wu, Tetrahedron Lett. 40 (1999) 1975 (https://doi.org/10.1002/chin.199923295)

J. M. Andres, N. de Elena, R. Pedrosa, A. Pérez-Encabo, Tetrahedron: Asymmetry 12 (2001) 1503 (https://doi.org/10.1016/S0957-4166(01)00044-1)

V. Popsavin, I. Krstić, M. Popsavin, B. Srećo, G. Benedeković, V. Kojić, G. Bogdanović Tetrahedron 62 (2006) 11044 (https://doi.org/10.1016/j.tet.2006.09.054)

B. Srećo, G. Benedeković, M. Popsavin, P. Hadžić, V. Kojić, G. Bogdanović, V. Divjaković, V. Popsavin, Tetrahedron 67 (2011) 9358 (https://doi.org/10.1016/j.tet.2011.09.132)

B. Srećo Zelenović, S. Kekezović, M. Popsavin, V. Kojić, G. Benedeković, V. Popsavin, J. Serb. Chem. Soc. 84 (2019) 1345 (https://doi.org/10.2298/JSC190912104S)

D. A. Scudiero, R. H. Shoemaker, K. D. Paull, A. Monks, S. Tierney, T. H. Nofziger, M. J. Currens, D. Seniff, M. R. Boyd, Cancer. Res. 48 (1988) 4827 (https://pdfs.semanticscholar.org/3299/2997d7d34c82c2ce34937b25c5a770dbd735.pdf)

J. Francuz, M. Popsavin, S. Djokić, V. Kojić, T. Srdić-Rajić, M. Rodić, D. Jakimov, V. Popsavin, Med. Chem. Commun. 9 (2018) 2017 (https://doi.org/10.1039/C8MD00431E)

D. Cremer, J. A. Pople, J. Am. Chem. Soc. 97 (1975) 1354 (https://dx.doi.org/10.1021/ja00839a011)

D. Cremer, Isr. J. Chem. 20 (1980) 12 (https://dx.doi.org/https://doi.org/10.1002/ijch.198000048).

Most read articles by the same author(s)

1 2 > >>