Anticancer and antimicrobial properties of imidazolium based ionic liquids with salicylate anion

Suzana Јovanović-Šanta, Vesna Kojić, Kristina Atlagić, Aleksandar Tot, Milan Vraneš, Slobodan Gadžurić, Maja Karaman

Abstract


Ionic liquids (ILs) are well known for their physico-chemical properties which recommend them for many purposes. Still, many of ILs are not environmentally friendly. Having in minds these facts, we designed a series of imidazolium-and salicylate-based ILs with low general toxicity and studied their pharmacological potential. Here we present their antiproliferative effect against human cancer cell lines and antimicrobial activity on selected Gram-positive and Gram-negative bacterial and Candida strains. ILs with 1-butyl-3-methyl­imi­dazolium or imidazolium cation (ILs 1 and 5), with the lowest dipole moments and highest lipophilicity, exerted highest cytotoxicity against colon and/or lung cancer cells, manifesting high selectivity to the normal cells. The most non-polar IL with 1-butyl-3-methylimidazolium cation expressed the strongest anticancer poten­tial, but it was toxic against normal cells as well, although its cytotoxicity was less than the cytotoxic effect of commercially used chemotherapeutic agents. The same compounds (ILs 1 and 5) expressed modest effect on the bacterial strains which causes serious lung diseases and pulmonary infections (S. aureus) or which are included in colon cancer formation (E. coli and E. faecalis). Salicylate itself was toxic against lung cancer cell line A549 and affected some Candida strains.


Keywords


ionic liquids; imidazolium; salicylate; cytotoxicity, antibacterial activity, antifungal activity

Full Text:

PDF (1,513 kB)

References


K. S. Egorova, E. G. Gordeev, V. P. Ananikov, Chem. Rev.117 (2017) 7132 (http://dx.doi.org/10.1021/acs.chemrev.6b00562)

I. M. Marrucho, L. C. Branco, L. P. N. Rebelo, Annu. Rev. Chem. Biomol. Eng.5 (2014) 527 (http://doi.org/10.1146/annurev-chembioeng-060713-040024 )

A. Miskiewicz, P. Ceranowicz, M. Szymczak, K. Bartuś, P. Kowalczyk, Int. J. Mol. Sci.19 (2018) 2779 (http://doi.org/10.3390/ijms19092779 )

F. Pfannkuch, H. Rettig, P. H. Stahl, Biological effects of the drug salt form, in: Handbook of Pharmaceutical Salts: Properties, Selection and Use P.H. Stahl, C.G. Wermuth, Ed(s). Wiley-VCH, Weinheim, Germany, 2002, p 117

W. Gouveia, T. F. Jorge, S. Martins, M. Meireles, M. Carolino, C. Cruz, T. V. Almeida, M.E. Araújo, Chemosphere104 (2014) 51 (https://doi.org/10.1016/j.chemosphere.2013.10.055)

P. Ranjan, B. S. Kitawat, M. Singh, RSC Adv.4 (2014) 53634 (http://doi.org/10.1039/c4ra08370a )

M. Cvjetko Bubalo, K. Radošević, A. Tomica, I. Slivac, J. Vorkapić-Furač, V. G. Srček, Arh Hig. Rada Toksikol.63 (2012) 15 (http://doi.org/10.2478/10004-1254-63-2012-2132 )

Z. Chen, B. Dai, W. Zhang, W. Guan, N. Liu, K. Liu, RSC Adv. 6 (2016) 96908 (http://doi.org/10.1039/c6ra14311c )

B. Peric, J. Sierra, E. Martí, R. Cruañas, M. A. Garau, Ecotoxicol. Environ. Saf. 115 (2015) 257 (https://doi.org/10.1016/j.ecoenv.2015.02.027 )

M. Cvjetko Bubalo, K. Hanousek, K. Radošević, V. Gaurina Srček, T. Jakovljević, I. Radojčić Redovniković, Ecotoxicol. Environ. Saf. 101 (2014) 116 (http://doi.org/10.1016/j.ecoenv.2013.12.022 )

S. Stolte, M. Matzke, J. Arning, A. Böschen, W. R. Pitner, U. Welz-Biermann, B. Jastorff, J. Ranke, Green Chem. 9 (2007) 1170 (http://doi.org/10.1039/b711119c )

M. Vraneš, A. Tot, S. Jovanović-Šanta, M. Karaman, S. Dožić, K. Tešanović, V. Kojić, S. Gadžurić, RSC Adv. 6 (2016) 96289 (http://doi.org/10.1039/c6ra16182k )

A. Rashin, L. Young, I.A. Topol, S.K. Burt, Chem. Phys. Lett. 230 (1994) 182 (https://doi.org/10.1016/0009-2614(94)01150-8)

T. Mosmann, J. Immunol. Methods 65 (1983) 55

S. S. Jovanović-Šanta, S. Andrić, N. Andrić, G. Bogdanović, J. A. Petrović, Med. Chem. Res.20 (2011) 1102 (http://doi.org/10.1007/s00044-010-9442-y )

S. Dasari, P.B. Tchounwou, Eur. J. Pharmacol. 740 (2014) 364 (http://doi.org/10.1016/j.ejphar.2014.07.025 )

E. J. Park, H. K. Kwon, Y. M. Choi, H. J. Shin, S. Choi, PLoS One7 (2012) 44990 (http://doi.org/10.1371/journal.pone.0044990 )

A. Sotto, V. Foulongne, D. Sirot, R. Labia, J. Jourdan, Int. J. Antimicrob. Agents. 19 (2002) 75 (https://doi.org/10.1016/S0924-8579(01)00465-4 )

Clinical Laboratory Standards Institute CLSI (2008a) M07-A9 – Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard, 9th (ed) Wayne, PA, USA

Clinical and Laboratory Standard Institute CLSI (2008b) M27-A3 and supplement S3 reference Method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard, 3rd (ed) Wayne, PA, USA

R. A. Kumar, N. Papaïconomou, J. M. Lee, J. Salminen, D. S. Clark, J.M. Prausnitz, Environ. Toxicol.24 (2009) 388 (https://doi.org/10.1002/tox.20443)

M. Stasiewicz, E. Mulkiewicz, R. Tomczak-Wandzel, J. Kurmirska, E. M. Siedlecka, M. Go1ebiowski, J. Gajdus, M. Czerwicka, P. Stepnowski, Ecotox. Environ. Saf.71 (2008) 157 (https://doi.org/10.1016/j.ecoenv.2007.08.011)

S. Stolte, J. Arning, U. Bottin-Weber, A. Mȕller, W. R. Pitner, U. Welz-Biermann, B. Jastorff, J. Ranke, Green Chem.9 (2007) 760 (https://doi.org/10.1039/b711119c)

T. P. T. Pham, C. W. Cho, Y. S. Yun, Water research 44 (2010) 352 (https://doi.org/10.1016/j.watres.2009.09.030)

S. V. Malhotra, V. Kumar, Bioorg. Med. Chem. Lett.20 (2010) 581 (https://doi.org/10.1016/j.bmcl.2009.11.085)

S.V. Malhotra, V. Kumar, C. Velez, B. Zayas, MedChemComm5 (2014) 1404 (https://doi.org/10.1039/c4md00161c)

P.Y. Chen, Y.T. Chang, ‎Electrochim Acta 75 (2012) 339 (https://doi.org/10.1016/j.electacta.2012.05.024)

A. Dimitrijević, T. Trtić-Petrović, M. Vraneš, S. Papović, A. Tot, S. Dožić, S. Gadžurić, J. Chem. Eng. Data 61 (2016) 549 (https://doi.org/10.1021/acs.jced.5b00697)

T. Trtić-Petrović, A. Dimitrijević, N. Zdolšek, J. Đorđević, A. Tot, M. Vraneš, S. Gadžurić, Anal. Bioanal. Chem.410 (2018) 155 (https://doi.org/10.1007/s00216-017-0705-z )

L. Klampfer, J. Cammenga, H. G. Wisniewski, S. D. Nimer, Blood 93 (1999) 2386

M. F. McCarty, K. I. Block, Integr. Cancer Ther. 5 (2006) 252 (https://doi.org/10.1177/1534735406291499)

A. Rosell, E. Monsó, N. Soler, F. Torres, J. Angrill, G. Riise, R. Zalacaín, J. Morera, A. Torres, Arch. Intern. Med.165 (2005) 891 (https://doi.org/10.1001/archinte.165.8.891)

M. I. Ahmed, S. Mukherjee, Cochrane Database Syst. Rev.3 (2018) CD011581 (https://doi.org/10.1002/14651858.CD011581.pub3)

World health organization (2018) Antibiotic resistance. https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance, Accessed 24/01/2019

S. H. Duncan, P. Louis, H. J. Flint, Lett. Appl. Microbiol.44 (2007) 343 (https://doi.org/10.1111/j.1472-765X.2007.02129.x)

A. M. Sheflin, A. K. Whitney, T. L. Weir, Curr. Oncol. Rep.16 (2014) 406 (https://doi.org/10.1007/s11912-014-0406-0 )

P. Ball, PNAS114 (2017) 13327 (https://doi.org/10.1073/pnas.1703781114)

M. A. Alem, L. J. Douglas, Antimicrob. Agents Chemother.48 (2004) 41 (https://doi.org/10.1128/aac.48.1.41-47.2004)

S. Stepanović, D. Vuković, M. Jesić, L. Ranin, J. Chemother.16 (2004) 134 (https://doi.org/10.1179/joc.2004.16.2.134)

R. Deva, R. Ciccoli, L. Kock, S. Nigam, FEMS Microbiol. Lett. 198 (2001) 37 (https://doi.org/10.1111/j.1574-6968.2001.tb10616.x).




DOI: https://doi.org/10.2298/JSC190717098J

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)