Diffusion models of gentamicin released in poly(vinyl alcohol)/chitosan hydrogel

Main Article Content

Vesna Mišković-Stanković
https://orcid.org/0000-0001-6525-9820
Ana Janković
https://orcid.org/0000-0002-5605-3297
Svetlana G Grujić
https://orcid.org/0000-0003-4787-1391
Ivana Matić-Bujagić
https://orcid.org/0000-0001-8459-873X
Vesna Radojević
Maja Vukašinović-Sekulić
https://orcid.org/0000-0001-5374-5020
Vesna Kojić
https://orcid.org/0000-0002-2399-0807
Marija Djošić
https://orcid.org/0000-0002-0869-2182
Teodor Atanackovic
https://orcid.org/0000-0002-8714-1388

Abstract

This study presents comparison of our recently formulated two compartmental model with General fractional derivative (GFD) and Korsmeyer-Peppas, Makoid-Banakar and Kopcha diffusion models. We have used our GFD model to study the release of gentamicin in poly (vinyl alcohol)/chitosan/gentamicin (PVA/CHI/Gent) hydrogel aimed for wound dressing in medical treatment of deep chronical wounds. The PVA/CHI/Gent hydrogel was prepared by physical cross linking of poly(vinyl alcohol)/chitosan dispersion using freezing-thawing method, and then was swollen for 48 h in gentamicin solution, at 37oC. Different physico-chemical (FTIR, SEM), mechanical and biological (cytotoxicity, antibacterial activity) properties have been determined. The concentration of released gentamicin was determined using a high-performance liquid chromatography (HPLC) coupled with mass spectrometry (MS). The ratio between concentration of released gentamicin and initial concentration of gentamicin in the hydrogel was monitored for the prolonged time period in order to obtain gentamicin release profile. It was proven that our novel diffusion GFD model better fitted with experimental data, and enabled the determination of diffusion coefficient precisely for the entire time period.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
V. Mišković-Stanković, “Diffusion models of gentamicin released in poly(vinyl alcohol)/chitosan hydrogel”, J. Serb. Chem. Soc., Feb. 2024.
Section
15 years of Professor Emeritus UNS

Funding data

  • Horizon 2020 Framework Programme
    Grant numbers „Twinning to excel materials engineering for medical devices ExcellMater“ grant no. 952033, H2020-WIDESPREAD-2018-2020/H2020-WIDESPREAD-2020-5,2020-2023 (Ana Janković, Vesna Radojević)
  • Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
    Grant numbers Contracts No. 451-03-47/2023-01/200023 (Marija Djošić), 451-03-47/2023-01/200135 (Vesna Radojević, Maja Vukašinović-Sekulić, Svetlana Grujić, Ivana Matić-Bujagić), 451-03-47/2023-01/200287 (Ana Janković)

References

D. Copot, R. L. Magin, R. De Keyser, C. Ionescu, Chaos, Solitons and Fractals 102 (2017) 441–446 (http://dx.doi.org/10.1016/j.chaos.2017.03.031)

L. Kovács, B. Benyó, J. Bokor, Z. Benyó, Comput. Methods Programs Biomed. 102 (2011) 105–118 (http://dx.doi.org/10.1016/j.cmpb.2010.06.019)

D. A. Drexler, L. Kovács, J. Sápi, I. Harmati, Z. Benyó, IFAC Proc. Vol. 44 (2011) 3753–3758 (http://dx.doi.org/10.3182/20110828-6-IT-1002.02107)

B. Kiss, J. Sápi, L. Kovács, SISY 2013 - IEEE 11th Int. Symp. Intell. Syst. Informatics, Proc. (2013) 271–275 (http://dx.doi.org/10.1109/SISY.2013.6662584)

D. Copot, C. M. Ionescu, Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern. 2014 (2014) 2452–2457 (http://dx.doi.org/10.1109/smc.2014.6974294)

C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, Commun. Nonlinear Sci. Numer. Simul. 51 (2017) 141–159 (http://dx.doi.org/10.1016/j.cnsns.2017.04.001)

C. M. Ionescu, D. Copot, R. De Keyser, IFAC-PapersOnLine 50 (2017) 15080–15085 (http://dx.doi.org/10.1016/j.ifacol.2017.08.2526)

J. K. Popović, D. T. Spasić, J. Tošić, J. L. Kolarović, R. Malti, I. M. Mitić, S. Pilipović, T. M. Atanacković, Commun. Nonlinear Sci. Numer. Simul. 22 (2015) 451–471 (http://dx.doi.org/10.1016/j.cnsns.2014.08.014)

A. Churilov, A. Medvedev, A. Shepeljavyi, Automatica 45 (2009) 78–85 (http://dx.doi.org/10.1016/j.automatica.2008.06.016)

V. Miskovic-Stankovic, M. Janev, T. M. Atanackovic, J. Pharmacokinet. Pharmacodyn. 50 (2023) 79–87 (http://dx.doi.org/10.1007/s10928-022-09834-8)

V. Miskovic-Stankovic, T. M. Atanackovic, Fractal Fract. 7 (2023) 1–13 (http://dx.doi.org/10.3390/fractalfract7070518)

D. Simões, S. P. Miguel, M. P. Ribeiro, P. Coutinho, A. G. Mendonça, I. J. Correia, Eur. J. Pharm. Biopharm. 127 (2018) 130–141 (http://dx.doi.org/10.1016/j.ejpb.2018.02.022)

M. Naseri-Nosar, Z. M. Ziora, Carbohydr. Polym. 189 (2018) 379–398 (http://dx.doi.org/10.1016/j.carbpol.2018.02.003)

E. Caló, V. V. Khutoryanskiy, Eur. Polym. J. 65 (2015) 252–267 (http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024)

K. Nešović, A. Janković, T. Radetić, M. Vukašinović-Sekulić, V. Kojić, L. Živković, A. Perić-Grujić, K. Y. K. Y. Rhee, V. Mišković-Stanković, Eur. Polym. J. 121 (2019) 109257 (https://doi.org/10.1016/j.eurpolymj.2019.109257)

K. Nešović, V. Mišković-Stanković, Polym. Eng. Sci. 60 (2020) 1393–1419 (http://dx.doi.org/10.1002/pen.25410)

K. Nešović, V. B. Mišković-Stanković, J. Vinyl Addit. Technol. (2021) 1–15 (http://dx.doi.org/10.1002/vnl.21882)

R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, N. A. Peppas, Int. J. Pharm. 15 (1983) 25–35 (http://dx.doi.org/10.1016/0378-5173(83)90064-9)

M. C. Makoid, A. Dufour, U. V. Banakar, S.T.P. Pharma Prat. 3 (1993) 49–58

M. Kopcha, N. G. Lordi, K. J. Tojo, J. Pharm. Pharmacol. 43 (1991) 382–387 (http://dx.doi.org/10.1111/j.2042-7158.1991.tb03493.x)

P. L. Ritger, N. A. Peppas, J. Control. Release 5 (1987) 23–36

P. L. Ritger, N. A. Peppas, J. Control. Release 5 (1987) 37–42 (http://dx.doi.org/10.1016/0168-3659(87)90035-6)

A. M. N. Santos, A. P. D. Moreira, C. W. P. Carvalho, R. Luchese, E. Ribeiro, G. B. McGuinness, M. F. Mendes, R. N. Oliveira, Materials (Basel). 12 (2019) 559 (http://dx.doi.org/10.3390/ma12040559)

S. Nkhwa, K. F. Lauriaga, E. Kemal, S. Deb, Conf. Pap. Sci. 2014 (2014) 403472 (http://dx.doi.org/10.1155/2014/403472)

M. Djošić, A. Janković, M. Stevanović, J. Stojanović, M. Vukašinović-Sekulić, V. Kojić, V. Mišković-Stanković, Mater. Chem. Phys. 303 (2023) 127766 (http://dx.doi.org/10.1016/J.MATCHEMPHYS.2023.127766)

A. Bernal-Ballen, J. Lopez-Garcia, M. A. Merchan-Merchan, M. Lehocky, Molecules 23 (2018) 3109 (http://dx.doi.org/10.3390/molecules23123109)

M. M. M. Abudabbus, I. Jevremović, A. Janković, A. Perić-Grujić, I. Matić, M. Vukašinović-Sekulić, D. Hui, K. Y. Y. Rhee, V. Mišković-Stanković, Compos. Part B Eng. 104 (2016) 26–34 (http://dx.doi.org/10.1016/J.COMPOSITESB.2016.08.024)

X. Xiong, J. Sun, D. Hu, C. Xiao, J. Wang, Q. Zhuo, C. Qin, L. Dai, RSC Adv. 10 (2020) 35226–35234 (http://dx.doi.org/10.1039/d0ra06053d)

M. Ghasemi, T. Turnbull, S. Sebastian, I. Kempson, Int. J. Mol. Sci. 22 (2021) 12827 (http://dx.doi.org/10.3390/ijms222312827)

G. Sjögren, G. Sletten, E. J. Dahl, J. Prosthet. Dent. 84 (2000) 229–236 (http://dx.doi.org/10.1067/mpr.2000.107227)

E. S. Permyakova, A. M. Manakhov, P. V. Kiryukhantsev-Korneev, A. N. Sheveyko, K. Y. Gudz, A. M. Kovalskii, J. Polčak, I. Y. Zhitnyak, N. A. Gloushankova, I. A. Dyatlov, S. G. Ignatov, S. Ershov, D. V. Shtansky, Appl. Surf. Sci. 556 (2021) 149751 (http://dx.doi.org/10.1016/j.apsusc.2021.149751)

J. Li, S. Zhuang, Eur. Polym. J. 138 (2020) 109984 (http://dx.doi.org/10.1016/j.eurpolymj.2020.109984)

Y. C. Chung, H. L. Wang, Y. M. Chen, S. L. Li, Bioresour. Technol. 88 (2003) 179–184 (http://dx.doi.org/10.1016/S0960-8524(03)00002-6)

K. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

T. M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with applications in Mechanics: Vibrations and Diffusion Processes, ISTE, London, John Wiley & Sons, New York, 2014.

I. Petráš, R. L. Magin, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 4588–4595 (http://dx.doi.org/10.1016/j.cnsns.2011.02.012)

A. R. M. Carvalho, C. M. A. Pinto, Commun. Nonlinear Sci. Numer. Simul. 61 (2018) 104–126 (http://dx.doi.org/10.1016/j.cnsns.2018.01.012)

J. Krstić, J. Spasojević, A. Radosavljević, A. Perić-Grujić, M. Đurić, Z. Kačarević-Popović, S. Popović, J. Appl. Polym. Sci. 11 (2014) 40321 (http://dx.doi.org/10.1002/app.40321)

H. Chopra, S. Bibi, S. Kumar, M. S. Khan, P. Kumar, I. Singh, Gels 8 (2022) 111 (http://dx.doi.org/10.3390/gels8020111)

E. Olewnik-Kruszkowska, M. Gierszewska, E. Jakubowska, I. Tarach, V. Sedlarik, M. Pummerova, Polymers (Basel). 11 (2019) 2093 (http://dx.doi.org/10.3390/polym11122093)

Most read articles by the same author(s)