Metal powder electrolysis: the shape of powder particles as a function of the exchange current density and overpotential for hydrogen evolution reactionion - Extended abstract

Main Article Content

Nebojša D. Nikolić

Abstract

The short survey of the dependence of the shape of electrolytically produced powder particles on the exchange current density for metal depo­sition and overpotential for hydrogen evolution reaction is presented. The dec­rease of the exchange current density leads to a branching of dendrites and their transformation from needle-like and the two-dimensional (2D) fern-like to the three-dimensional (3D) pine-like shapes. Vigorous hydrogen evolution inhibits the dendritic growth leading to a formation of cauliflower-like and the spongy-like particles. The very thin needles were obtained by molten salt elec­trolysis. Mechanisms responsible for the formation of both the dendritic (the general theory of disperse deposits formation) and the cauliflower-like and the spongy-like particles (the concept of "effective overpotential") were also men­tioned.

.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. D. Nikolić, “Metal powder electrolysis: the shape of powder particles as a function of the exchange current density and overpotential for hydrogen evolution reactionion - Extended abstract”, J. Serb. Chem. Soc., vol. 85, no. 3, pp. 347–352, Mar. 2020.
Section
Electrochemistry

References

REFERENCES

M. Amiri, S. Nouhi, Y. Azizian-Kalandaragh, Mater. Chem. Phys. 155 (2015) 129 (https://doi.org/10.1016/j.matchemphys.2015.02.009)

K. I. Popov, S. S. Djokić, N. D. Nikolić, V. D. Jović, Morphology of Electrochemically and Chemically Deposited Metals, Springer International Publishing, Berlin, 2016 (https://doi.org/10.1007/978-3-319-26073-0)

R. Winand, Electrochim. Acta 39 (1994) 1091 (https://doi.org/10.1016/0013-4686(94)E0023-S)

N. D. Nikolić, J. Electrochem. Sci. Eng. 10 (2020) 111 (http://dx.doi.org/10.5599/jese.707)

N. D. Nikolić, P. M. Živković, S. I. Stevanović, G. Branković, J. Serb. Chem. Soc. 81 (2016) 553 (http://dx.doi.org/10.2298/JSC151218028N)

N. D. Nikolić, Dj. Dj. Vaštag, P. M. Živković, B. Jokić, G. Branković, Adv. Powder Technol. 24 (2013) 674 (http://dx.doi.org/10.1016/j.apt.2012.12.008)

N. D. Nikolić, P. M. Živković, J. D. Lović, G. Branković, J. Electroanal. Chem. 785 (2017) 65 (https://doi.org/10.1016/j.jelechem.2016.12.024)

N. D. Nikolić, Lj. Avramović, E. R. Ivanović, V. M. Maksimović, Z. Baščarević, N. Ignjatović, Trans. Nonferrous Met. Soc. China 29 (2019) 1275 (http://dx.doi.org/10.1016/S1003-6326(19)65034-X)

N. D. Nikolić, P. M. Živković, M. G. Pavlović, Z. Baščarević, J. Serb. Chem. Soc. 84 (2019) 1209 (https://doi.org/10.2298/JSC190522066N)

V. D. Jović, B. M. Jović, M. G. Pavlović, Electrochim. Acta 51 (2006) 5468 (http://dx.doi.org/10.1016/j.electacta.2006.02.022)

V. S. Cvetković, N. M. Vukićević, N. D. Nikolić, Z. Baščarević, T. S. Barudžija, J. N. Jovićević, J. Electroanal. Chem. 842 (2019) 168 (https://doi.org/10.1016/j.jelechem.2019.04.067)

K. I. Popov, N. D. Nikolić, in Electrochem. Prod. of Met. Powders, Ser. Mod. Asp. Electrochem S. S. Djokić, (Ed.), Vol. 54, Springer, Berlin, 2012, pp. 1–62 (https://doi.org/10.1007/978-1-4614-2380-5_1)

N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, M. G. Pavlović, J. Electroanal. Chem. 588 (2006) 88 (https://doi.org/10.11896/j.issn.1005-023X.2018.19.006).

Most read articles by the same author(s)