A survey on the characterization and biological activity of isatin derivatives
Main Article Content
Abstract
The derivatives of isatin have already been known to display a variety of biological activities. Therefore, the studies on their activity and its relation to structure have recently become a popular subject for investigation. The examined compounds were synthesized by the reaction of isatin and substituted primary amines and characterized by spectroscopic methods. The investigation of the antimicrobial and antioxidative activity of the synthesized compounds was performed by broth microdilution method. As for the characterization of the investigated isatin based Schiff bases, the linear solvation energy relationships (LSER) were used to analyze the solvent influence on the UV absorption maxima shifts (nmax), using the well known Kamlet–Taft model and taking geometrical isomers into consideration when possible. Linear free energy relationships (LFER) were used to analyze substituent effect on pKa, as well as NMR chemical shifts and nmax values. The antimicrobial activity and characterization were related using both experimental and theoretical methods.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
R. W. Daisley, V. K. Shah, J. Pharm. Sci. 73 (1984) 407 (https://doi.org/10.1002/jps.2600730333)
E. Piscopo, M. V. Diurno, R. Gogliardi, M. Cucciniello, G. Veneruso, Boll. Soc. Ital. Biol. Sper. 63 (1981) 827
S. N. Pandeya, D. Sriram, E. De. Clercq, C. Pannecouque, M. Witvrouw, Ind. J. Pharm. Sci. 60 (1999) 207 (http://www.ijpsonline.com/articles/antihiv-activity-of-some-mannich-bases-of-lsatin-derivatives.pdf)
V. A. Muthukumar, H. C. Nagaraj, D. Bhattacherjee, S. George, Int. J. Pharm. Pharm. Sci. 5 (Suppl. 3) (2013) 95
R. S. Varma, I. A. Khan, Ind. J. Med. Res. 67 (1978) 315
F. D. Popp, H. J. Pajouhesh, Pharm. Sci. 17 (1988) 1052
R. S. Varma, W. L. Nobles, J. Pharm. Sci. 64 (1975) 881 (https://doi.org/10.1002/jps.2600640539)
F. D. Popp, R. Parson, B. E. Donigan, J. Heterocycl. Chem. 17 (1980) 1329 (https://doi.org/10.1002/jhet.5570170639)
F. Kontz, Sci. Pharm. 41 (1973) 123
F. D. Popp, F. P. Silver, A. C. Noble, J. Med. Chem. 10 (1967) 986 (https://pubs.acs.org/doi/pdf/10.1021/jm00317a074)
P. Pakravan, S. Kashanian, M. M. Khodaei, F. J. Harding, Pharmacol. Rep. 65 (2013) 313 (https://doi.org/10.1016/S1734-1140(13)71007-7)
G. M. Šekularac, J. B. Nikolić, P. Petrović, B. Bugarski, B. Đurović, S. Ž. Drmanić, J. Serb. Chem. Soc. 79 (2014) 1347 (https://doi.org/10.2298/JSC140709084S)
D. R. Brkić, A. R. Božić, V. D. Nikolić, A. D. Marinković, H. Elshaflu, J. B. Nikolić, S. Ž. Drmanić, J. Serb. Chem. Soc. 81 (2016) 979 (https://doi.org/10.2298/JSC160119049B)
D. R. Brkić, A. R. Božić, A. D. Marinković, M. K. Milčić, N. Ž. Prlainović, F. H. Assaleh, I. N. Cvijetić, J. B. Nikolić, S. Ž. Drmanić, Spectrochim. Acta, A 196 (2018) 16 (https://doi.org/10.1016/j.saa.2018.01.080)
C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Wienheim, 2004, p. 329
M. J. Kamlet, J. L. M. Abbound, R. W. Taft, in Progress in Physical Organic Chemistry Vol. 13, R.W. Taft, Ed., Wiley, New York, 1981, p. 485 (https://doi.org/10.1002/9780470171929.ch6)
L. P. Hammett, J. Am. Chem. Soc. 59 (1937) 96 (https://pubs.acs.org/doi/pdf/10.1021/ja01280a022)
O. Exner, in Advances in linear free energy relationship, N. B. Champan, J Shorter, Eds., Plenum Press, London, 1972, pp. 1–69 (ISBN 978-1-4615-8660-9)
C. Hansch, A. Leo, D. Hoekman, J. Med. Chem. 39 (1996) 1189 (https://doi.org/10.1021/jm950902o)
Y. Vélez, C. Díaz-Oviedo, R. Quevedo, J. Mol. Struct. 1133 (2017) 430 (https://doi.org/10.1016/j.molstruc.2016.12.039)
Q. X. Guo, Y. W. Liu, X. C. Li, L. Z. Zhong, Y. G. Peng, J. Org. Chem. 77 (2012) 3589 (https://doi.org/10.1021/jo202585w)
P. Davidovich, D. Novikova, V. Tribulovich, S. Smirnov, V. Gurzhiy, G. Melino, A. Garabadzhiu, J. Mol. Struct. 1075 (2014) 450 (https://doi.org/10.1016/j.molstruc.2014.07.008)
K. Jakusová, M. Cigáň, J. Donovalová, M. Gáplovský, R. Sokolík, A. Gáplovský, J. Photochem. Photobiol., A 288 (2014) 60 (https://doi.org/10.1039/C5RA06625E)
M. Cigáň, M. Gáplovský, K. Jakusová, J. Donovalová, M. Horváth, J. Filo, A. Gáplovský, RSC Adv. 5 (2015) 62449 (https://doi.org/10.1039/C5RA06625E)
Z. H. Chohana, H. Perveza, A. Raufb, K. M. Khanc, C. T. Supurand, J. Enzym. Inhib. Med. Chem. 19 (2004) 417 (https://doi.org/10.1080/14756360410001710383)
E. Piscopo, M. V. Diurno, F. Imperadrice, M. Cucciniello, G. Veneruso, Boll. – Soc. It. Biol. Sper. 62 (1986) 1441
J. Panda, V. J. Patro, B. Sahoo, J. Mishra, J. Nanoparticles (2013), Article ID 549502, http://dx.doi.org/10.1155/2013/549502
A. Espinel-Ingroff, A. Fothergill, M. Ghannoum, E. Manavathu, L. Ostrosky-Zeichner, M. Pfaller, M. Rinaldi, W. Schell, T. Walsh, J. Clin. Microbiol. 43 (2005) 5243 (https://doi.org/10.1128/JCM.43.10.5243-5246.2005)
K. Shimada, K. Fujikawa, K. Yahara, T. Nakamura, J. Agri. Food Chem. 40 (1992) 945 (https://pubs.acs.org/doi/pdf/10.1021/jf00018a005)
M. J. Kamlet, J. L. M. Abboud, M. H. Abraham, R. W. Taft, J. Org. Chem. 48 (1983) 2877 (https://pubs.acs.org/doi/pdf/10.1021/jo00165a018)
F. H. Assaleh, A. D. Marinković, J. Nikolić, N. Ž. Prlainović, S. Drmanić, M. M. Khan, B. Ž. Jovanović, Arab. J. Chem. 12 (2019) 3357 (https://doi.org/10.1016/j.arabjc.2015.08.014)
A. Albert, E. P. Serjeant, The Determination of Ionization Constants, 2nd ed., Chapman and Hall, London, 1971, p. 44.