Voltammetric quantification of the anesthetic drug propofol (2,6-diisopropylphenol) in pharmaceutical formulations on a boron-doped diamond electrode Scientific paper

Main Article Content

Ertuğrul Keskin
http://orcid.org/0000-0001-5216-3520
Shabnam Allahverdiyeva
https://orcid.org/0000-0001-6240-7322
Hande İzem Özok
https://orcid.org/0000-0002-9587-096X
Oruç Yunusoğlu
http://orcid.org/0000-0003-1075-9574
Yavuz Yardım
http://orcid.org/0000-0002-9587-096X

Abstract

In this paper, the detailed electrochemistry of propofol (PRO), which is one of the intravenous agents commonly used for sedative-hypnotic pur­poses, was examined. In cyclic voltammetry, the agent showed one irreversible and diffusion‐controlled oxidation peak, resulting in the formation of a couple with a reduction and re-oxidation wave at less positive potentials.  The effect of electrode pretreatment procedures on the electrochemical response of PRO was investigated using square wave voltammetry (SWV) and the optimum pro­ce­dure was used to improve the signal response in subsequent studies. Quan­tification of PRO was realized based on the first oxidation peak using SWV. After optimization of all variables, the linear working range of PRO was found to be between 2.5 μg mL-1 (1.4×10-5 mol L-1) and 160.0 μg mL-1 (1.1×10-3 mol L-1, n = 15) with a detection limit 0.71 μg mL-1 (3.9×10-6 mol L-1). No note­worthy interference effect was detected. Furthermore, the developed method was used for quantification of PRO in pharmaceutical samples.

Article Details

How to Cite
[1]
E. Keskin, S. Allahverdiyeva, H. İzem Özok, O. Yunusoğlu, and Y. Yardım, “Voltammetric quantification of the anesthetic drug propofol (2,6-diisopropylphenol) in pharmaceutical formulations on a boron-doped diamond electrode: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 7-8, pp. 711-724, Aug. 2021.
Section
Analytical Chemistry

References

K. Ode, Anaesth. Intensive Care Med. 20 (2019) 118 (http://dx.doi.org/10.1016/j.mpaic.2018.12.008)

X. S. Fan, F. X. Di, X. M. Feng, C. C. Li, C. Y. Bi, J. Li, J. Y. Yin, Y. C. Han, Chinese J. Anal. Chem. 48 (2020) e20056 (http://dx.doi.org/10.1016/S1872-2040(20)60011-1)

A. Maas, C. Maier, S. Iwersen-Bergmann, B. Madea, C. Hess, J. Pharm. Biomed. Anal. 146 (2017) 236 (http://dx.doi.org/10.1016/j.jpba.2017.08.035)

N. Ji Kwon, H. J. Kim, S. Cho, M. A. Lee, E. Han, Forensic Sci. Int. 306 (2020) 110070 (http://dx.doi.org/10.1016/j.forsciint.2019.110070)

I. Šrámková, C. G. Amorim, H. Sklenářová, M. C. B. M. Montenegro, B. Horstkotte, A. N. Araújo, P. Solich, Talanta 118 (2014) 104 (http://dx.doi.org/10.1016/j.talanta.2013.09.059)

M. H. Yeganeh, I. Ramzan, J. Chromatogr., B 691 (1997) 478 (http://dx.doi.org/10.1016/S0378-4347(96)00469-0)

H. Zhang, P. Wang, M. G. Bartlett, J. T. Stewart, J. Pharm. Biomed. Anal. 16 (1998) 1241 (http://dx.doi.org/10.1016/S0731-7085(97)00262-8)

C. A. J. Knibbe, V. S. Koster, V. H. M. Deneer, R. M. Stuurman, P. F. M. Kuks, R. Lange, J. Chromatogr., B 706 (1998) 305 (http://dx.doi.org/10.1016/S0378-4347(97)00571-9)

X. Cussonneau, E. De Smet, K. Lantsoght, J. P. Salvi, M. Bolon-Larger, R. Boulieu, J. Pharm. Biomed. Anal. 44 (2007) 680 (http://dx.doi.org/10.1016/j.jpba.2006.10.020)

F. Maurer, M. Geiger, T. Volk, D. I. Sessler, S. Kreuer, J. Pharm. Biomed. Anal. 143 (2017) 116 (http://dx.doi.org/10.1016/j.jpba.2017.05.042)

M. Y. M. Peeters, H. Kuiper, B. Greijdanus, J. van der Naalt, C. A. J. Knibbe, D. R. A. Uges, J. Chromatogr., B 852 (2007) 635 (http://dx.doi.org/10.1016/j.jchromb.2007.01.001)

L. Bajpai, M. Varshney, C. N. Seubert, D. M. Dennis, J. Chromatogr., B 810 (2004) 291 (http://dx.doi.org/10.1016/j.jchromb.2004.08.023)

F. Beaudry, S. A. Guénette, A. Winterborn, J. F. Marier, P. Vachon, J. Pharm. Biomed. Anal. 39 (2005) 411 (http://dx.doi.org/10.1016/j.jpba.2005.04.041)

S. Cohen, F. Lhuillier, Y. Mouloua, B. Vignal, P. Favetta, J. Guitton, J. Chromatogr., B 854 (2007) 165 (http://dx.doi.org/10.1016/j.jchromb.2007.04.021)

H. S. Kim, J. C. Cheong, J. Il Lee, M. K. In, J. Pharm. Biomed. Anal. 85 (2013) 33 (http://dx.doi.org/10.1016/j.jpba.2013.06.027)

L. K. Sørensen, J. B. Hasselstrøm, J. Pharm. Biomed. Anal. 109 (2015) 158 (http://dx.doi.org/10.1016/j.jpba.2015.02.035)

J. H. Kwak, H. K. Kim, S. Choe, S. In, J. S. Pyo, J. Chromatogr., B 1015–1016 (2016) 209 (http://dx.doi.org/10.1016/j.jchromb.2016.01.061)

A. Khedr, S. S. A. El-Hay, A. K. Kammoun, J. Pharm. Biomed. Anal. 134 (2017) 195 (http://dx.doi.org/10.1016/j.jpba.2016.11.051)

F. Maurer, T. Shopova, B. Wolf, D. Kiefer, T. Hüppe, T. Volk, D. I. Sessler, S. Kreuer, J. Pharm. Biomed. Anal. 150 (2018) 341 (http://dx.doi.org/10.1016/j.jpba.2017.12.043)

Y. Hui, K. Raedschelders, H. Zhang, D. M. Ansley, D. D. Y. Chen, J. Chromatogr., B 877 (2009) 703 (http://dx.doi.org/10.1016/j.jchromb.2009.01.030)

F. Stradolini, T. Kilic, A. Di Consiglio, M. Ozsoz, G. De Micheli, S. Carrara, Electroanalysis 30 (2018) 1363 (http://dx.doi.org/10.1002/elan.201700834)

F. Stradolini, T. Kilic, I. Taurino, G. De Micheli, S. Carrara, Sensors Actuators, B 269 (2018) 304 (http://dx.doi.org/10.1016/j.snb.2018.04.082)

J. Langmaier, F. Garay, F. Kivlehan, E. Chaum, E. Lindner, Anal. Chim. Acta 704 (2011) 63 (http://dx.doi.org/10.1016/j.aca.2011.08.003)

S. Thiagarajan, C. Y. Cheng, S. M. Chen, T. H. Tsai, J. Solid State Electrochem. 15 (2011) 781 (http://dx.doi.org/10.1007/s10008-010-1160-3)

F. Kivlehan, F. Garay, J. Guo, E. Chaum, E. Lindner, Anal. Chem. 84 (2012) 7670 (http://dx.doi.org/10.1021/ac3006878)

O. I. Lipskikh, E. I. Korotkova, Y. P. Khristunova, J. Barek, B. Kratochvil, Electrochim. Acta 260 (2018) 974 (http://dx.doi.org/10.1016/j.electacta.2017.12.027)

J. Xu, Y. Wang, S. Hu, Microchim. Acta (2016) (http://dx.doi.org/10.1007/s00604-016-2007-0)

M. Hanko, Ľ. Švorc, A. Planková, P. Mikuš, J. Electroanal. Chem. 840 (2019) 295 (http://dx.doi.org/10.1016/j.jelechem.2019.03.067)

Ľ. Švorc, K. Kalcher, Sensors Actuators, B 194 (2014) 332 (http://dx.doi.org/10.1016/j.snb.2013.12.104)

S. Allahverdiyeva, P. Talay Pınar, E. Keskin, O. Yunusoğlu, Y. Yardım, Z. Şentürk, Sensors Actuators, B 303 (2020) 127174 (http://dx.doi.org/10.1016/j.snb.2019.127174)

Ľ. Švorc, K. Borovská, K. Cinková, D. M. Stanković, A. Planková, Electrochim. Acta 251 (2017) 621 (http://dx.doi.org/10.1016/j.electacta.2017.08.077)

O. Sarakhman, L. Dubenska, Ľ. Švorc, J. Electroanal. Chem. 858 (2020) (http://dx.doi.org/10.1016/j.jelechem.2019.113759)

E. Keskin, S. Allahverdiyeva, E. Şeyho, Y. Yardim, J. Serbian Chem. Soc. 85 (2020) 923 (http://dx.doi.org/10.2298/JSC190906138K)

E. Keskin, Y. Yardim, A. Levent, Z. Şentürk, Rev. Roum. Chim. 64 (2019) 1063 (http://dx.doi.org/10.33224/rrch.2019.64.12.06)

D. F. Pereira, E. R. Santana, J. V. Piovesan, A. Spinelli, Diam. Relat. Mater. 105 (2020) 107793 (http://dx.doi.org/10.1016/j.diamond.2020.107793)

P. Samiec, Ľ. Švorc, D. M. Stanković, M. Vojs, M. Marton, Z. Navrátilová, Sensors Actuators, B 245 (2017) 963 (http://dx.doi.org/10.1016/j.snb.2017.02.023)

Ľ. Švorc, J. Sochr, M. Rievaj, P. Tomčík, D. Bustin, Bioelectrochemistry 88 (2012) 36 (http://dx.doi.org/10.1016/j.bioelechem.2012.04.004)

R. Trouillon, Y. Einaga, M. A. M. Gijs, Electrochem. Commun. 47 (2014) 92 (http://dx.doi.org/10.1016/j.elecom.2014.07.028)

P. T. Pinar, H. S. Ali, A. A. Abdullah, Y. Yardim, Z. Şentürk, Marmara Pharm. J. 22 (2018) 460.