Encapsulation of peach waste extract in Saccharomyces cerevisiae cells

Authors

  • Dragoljub Cvetković University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
  • Aleksandra Ranitović University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
  • Vanja Šeregelj University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia https://orcid.org/0000-0003-0302-0851
  • Olja Šovljanski University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia https://orcid.org/0000-0002-9118-4209
  • Jelena Vulić University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
  • Branislav Jović University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
  • Vladimir Pavlović University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Zemun, Serbia

DOI:

https://doi.org/10.2298/JSC201201001C

Keywords:

phenolics, carotenoids, yeast, phytochemical stability, epicatechin, catechin

Abstract

As a secondary industry product, peach waste (PW) presents an ecological problem, but a potentially rich source of natural antioxidants. A potential and novel way to improve the phytochemical stability of waste rich in phytochemicals is encapsulation in yeast cells which possess good structure characteristics. In the present study, PW extract was encapsulated in non-plasmolyzed, plasmolyzed, and living Saccharomyces cerevisiae cells by freeze-drying method. HPLC analysis revealed that β-carotene is the most abundant carotenoid, while epicatechin and catechin are the most abundant phenolics in PW. The highest encapsulation efficiency of carotenoids (86.59 %), as well as phenolics (66.98 %), was obtained with freeze-dried non-plasmolyzed yeast cells used as carriers. Although plasmolysis can cause some changes in yeast cell structure and properties, it did not enhance the encapsulation efficiency of present phytochemicals. Successful encapsulation of PW extract in yeast cells was confirmed by FTIR spectroscopy and SEM imaging. The obtained results present the encapsulation of sensitive compounds in yeast cells by freeze-drying as an excellent method for preserving valuable compounds and their potential use in the food and pharmaceutical industry.

References

E. I. Paramera, S. J. Konteles, V. T. Karathanos, Food Chem. 74 (2011a) 125 (https://doi.org/10.1016/j.foodchem.2010.09.063)

B. N. Pham-Hoang, C. Romero-Guido, Y. Waché, Appl. Microbiol. Biotechnol. 97 (2013) 6635 (https://doi.org/10.1007/s00253-013-5044-1)

E. I. Paramera, S. J. Konteles, V. T. Karathanos, Food Chem. 125 (2011b) 913 (https://doi.org/10.1016/j.foodchem.2010.09.071)

R. Salari, O. Rajabi, Z. Khashyarmanesh, M. Fathi Najafi, B. S. FazlyBazzaz Iranian J. Pharm. Res. 14 (2015) 1247 (PMCID: PMC4673954)

S. Mokhtari, S. Mahdi Jafari, M. Khomeiri, Y. Maghsoudlou, Y. Ghorbani, Food Res. Int. 96 (2017) 1 (https://doi.org/10.1016/j.foodres.2017.03.014)

G. Shi, L. Rao, H. Yu, H. Xiang, G. Pen, S. Long, C. Yang, J. Food Eng. 80 (2007) 1060 (https://doi.org/10.1016/j.jfoodeng.2006.06.038)

C. K. Chow, S. Palecek, Biotech. Prog. 20 (2004) 449 (https://doi.org/10.1021/bp034216r)

V. Normand, G. Dardelle, P. E. Bouquerand, L. Nicolas, D. J. Johnston, J. Agric. Food Chem. 53 (2005) 7532 (https://doi.org/10.1021/jf0507893)

E. I. Paramera, V. T. Karathanos, S. J. Konteles, Yeast cells and yeast-based materials for microencapsulation, Elsevier Inc. (2014) 267 (https://doi.org/10.1016/C2012-0-00852-6)

J. R. P. Bishop, G. Nelson, J. Lamb, J. Microencapsulation. 15 (1998) 761 (https://doi.org/10.3109/02652049809008259)

G. Shi, L. Rao, H. Yu, H. Xiang, H. Yang, R. Ji, Int. J. Pharm. 349 (2008) 83 (https://doi.org/10.1016/j.ijpharm.2007.07.044)

F. Saidani, R. Giménez, C. Aubert, G. Chalot, J. A. Betrán, Y. Gogorcena, J. Food Compos. Anal. 62 (2017) 1 (https://doi.10.1016/j.jfca.2017.04.015)

I. Hasbay Adil, I. H. Çetin, M. E. Yener, A. Bayındırlı, J. Supercrit. Fluids. 43 (2007) 55 (https://doi.org/10.1016/j.supflu.2007.04.012)

X. Liao, P. Greenspan, R. B. Pegg, Food Chem. 271 (2019) 1 (https://doi.org/10.1016/j.foodchem.2018.07.163)

A. Dalla Valle, I. Mignani, A. Spinardi, F. Galvano, S. Ciappellano, Eur. Food Res. Technol. 225 (2007) 167 (https://doi.org/10.1007/s00217-006-0396-8)

A. Schieber, F. C. Stintzing, R. Carle, Trends Food Sci. Technol. 12 (2001) 401 (https://doi.org/10.1016/S0924-2244(02)00012-2)

H. Kowalska, K. Czajkowska, J. Cichowska, A. Lenart, Trends Food Sci. Technol. 67 (2017) 1 (https://doi.org/10.1016/j.tifs.2017.06.016)

I. Hasbay Adil, H. I. Çetin, M. E. Yener, A. Bayındırli, J. Supercrit. Fluids. 43 (2007) 55 (https://doi.org/10.1016/j.supflu.2007.04.012)

S. Rodríguez-González, I. F. Pérez-Ramírez, D. M. Amaya-Cruz, M. A. Gallegos-Corona, M. Ramos-Gomez, O. Mora, R. Reynoso-Camacho, J. Funct. Foods. 45 (2018) 58 (https://doi.org/10.1016/j.jff.2018.03.010)

V. Šeregelj, G. Ćetković, J. Čanadanović-Brunet, V. Tumbas-Šaponjac, J. Vulić, S. Stajčić, Acta Period. Tech. 48 (2017) 261 (https://doi.org/10.2298/APT1748261S)

M. Nagata, I. Yamashita, Japan Soc. Food Sci. Technol. 39 (1992) 925 (https://doi.org/10.3136/nskkk1962.39.925)

A. Girones-Vilaplana, P. Mena, D. A. Moreno, C. Garcia-Viguera, J. Sci. Food Agric. 94 (2014) 1090 (https://doi.org/10.1002/jsfa.6370)

M. Oyaizu, Japanese J. Nutr. Dietet. 94 (1986) 307 (https://doi.org/10.5264/eiyogakuzashi.44.307)

M. S. Al-Saikhan, L. R. Howard, Jr. JC. Miller, J. Food Sc. 60 (1995) 341 (https://doi.org/10.1111/j.1365-2621.1995.tb05668.x)

V. Tumbas Šaponjac, G. Ćetković, J. Čanadanović-Brunet, B. Pajin, S. Djilas, J. Petrović, J. Vulić, Food Chem. 207 (2016) 27 (https://doi.org/10.1016/j.foodchem.2016.03.082)

D. Giuffrida, G. Torre, G. Dugo, Fruits. 68 (2012) 39 (https://doi.org/10.1051/fruits/2012049)

B. T. Stojanovic, S. S. Mitic, G. S. Stojanovic, M. M. Mitic, D. A. Kostic, D. D. Paunovic, B. Arsic, Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 44 (2016) 175 (https://doi.org/10.15835/nbha44110192)

C. Andreotti, D. Ravaglia, A. Ragaini, G. Costa, Ann. App. Biol. 153 (1998) 11 (https://doi.org/10.1111/j.1744-7348.2008.00234.x)

C. Forni, F. Facchiano, M. Bartoli, S. Pieretti , A. Facchano, D. D'Arcamgelo, S. Norelli, G. Valle , R. Nisini , S. Beninati , C. Tabolacci, R. N. Jadeja, Bio. Med. Res. Int. (2019) (ID: 8748253)

E. Dadkhodazade, A. Mohammadi, S. Shojaee-Aliabadi, A. M. Mortazavian, L. Mirmoghtadae, S. M. Hosseni, Food Biophysics. 13 (2018) 231 (https://doi.org/10.1007/s11483-018-9546-3)

M. Kavosi, A. Mohammadi, S. Shojaee-Aliabadi, R. Khaksar, S. M. Hosseini, J. Sci. Food Agric. 98 (2018) 1 (https://doi.org/10.1002/jsfa.8696)

G. J. Morris, L. Winters, G. E. Coulson, K. J. Clarke, J. Gen. Microbiol. 129 (1984) 2023 (https://doi.org/10.1099/00221287-132-7-2023)

Downloads

Published

2021-01-04

How to Cite

[1]
D. Cvetković, “Encapsulation of peach waste extract in Saccharomyces cerevisiae cells”, J. Serb. Chem. Soc., vol. 85, no. 5, Jan. 2021.

Issue

Section

Biochemistry & Biotechnology

Most read articles by the same author(s)