π–π interactions in structural stability: Role in superoxide dismutases Scientific paper

Main Article Content

Srđan Stojanović
https://orcid.org/0000-0002-1847-9318
Mario Zlatović
https://orcid.org/0000-0003-4311-1731

Abstract

In the present work, the influences of π–π interactions in superoxide dismutase (SOD) active centers were analyzed. The majority of the aromatic residues are involved in π–π interactions. Predominant type of interacting pairs is His–His and His–Trp pairs. In addition to π–π interactions, π residues also form π-networks in SOD proteins. The π–π interactions are most favorable at the pair distance range of 5–7 Å. We observed that most of the π–π interactions shows stabilization energies in the range −4.2 to −12.6 kJ mol-1, while the metal assisted π–π interactions showed an energy in the range −83.7 to −334.7 kJ mol-1. Most of the π–π interacting residues were evolutionary conserved and thus probably important in maintaining the structural stability of proteins through these interactions. A high percentage of these residues could be considered as stabilization centers, contributing to the net stability of SOD proteins.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Stojanović and M. Zlatović, “π–π interactions in structural stability: Role in superoxide dismutases: Scientific paper”, J. Serb. Chem. Soc., Jun. 2022.
Section
Organic Chemistry

Funding data

References

C. D. Andersson, B. K. Mishra, N. Forsgren, F. Ekström, A. Linusson, J. Phys. Chem. B. 124 (2020) 6529 (https://doi.org/10.1021/acs.jpcb.0c03778)

E. Lanzarotti, L. A. Defelipe, M. A. Marti, A. n. G. Turjanski, J. Cheminf. 12 (2020) 30 (https://doi.org/10.1186/s13321-020-00437-4)

K. S. Chatterjee, R. Das, J. Biol. Chem. 297 (2021) (https://doi.org/10.1016/j.jbc.2021.100970)

H. B. Gray, J. R. Winkler, Chem. Sci. 12 (2021) 13988 (https://doi.org/10.1039/D1SC04286F)

Z. Y. Yan, X. J. Xu, L. Fang, C. Geng, Y. P. Tian, X. D. Li, Phytopathology Research 3 (2021) 10 (https://doi.org/10.1186/s42483-021-00088-9)

Sasidharan S, Ramakrishnan V. Aromatic interactions directing peptide nano-assembly. Advances in Protein Chemistry and Structural Biology. Academic Press, 2022 (https://doi.org/10.1016/bs.apcsb.2022.01.001)

S. K. Burley, G. A. Petsko, Science 229 (1985) 23 (https://www.science.org/doi/10.1126/science.8235619)

E. Cauët, M. Rooman, R. Wintjens, J. Liévin, C. Biot, J. Chem. Theory Comput. 1 (2005) 472 (https://doi.org/10.1021/ct049875k)

M. O. Sinnokrot, C. D. Sherrill, J. Am. Chem. Soc. 126 (2004) 7690 (https://doi.org/10.1021/ja049434a)

G. B. McGaughey, M. Gagné, A. K. Rappé, J. Biol. Chem. 273 (1998) 15458 (https://doi.org/10.1074/jbc.273.25.15458)

R. Bhattacharyya, U. Samanta, P. Chakrabarti, Protein Eng. 15 (2002) 91 (https://doi.org/10.1093/protein/15.2.91)

N. Kannan, S. Vishveshwara, Protein Eng. 13 (2000) 753 (https://doi.org/10.1093/protein/13.11.753)

S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J. Am. Chem. Soc. 124 (2002) 104 (https://doi.org/10.1021/ja0105212)

A. V. Morozov, K. M. S. Misura, K. Tsemekhman, D. Baker, J. Phys. Chem. B. 108 (2004) 8489 (https://doi.org/10.1021/jp037711e)

C. Chipot, R. Jaffe, B. Maigret, D. A. Pearlman, P. A. Kollman, J. Am. Chem. Soc. 118 (1996) 11217 (https://doi.org/10.1021/ja961379l)

E. Lanzarotti, R. R. Biekofsky, D. O. A. Estrin, M. A. Marti, A. n. G. Turjanski, J. Chem. Inf. Model. 51 (2011) 1623 (https://doi.org/10.1021/ci200062e)

V. R. Ribić, S. Đ. Stojanović, M. V. Zlatović, Int. J. Biol. Macromol. 106 (2018) 559 (https://doi.org/10.1016/j.ijbiomac.2017.08.050)

S. Stojanović, M. Zlatović, J. Serb. Chem. Soc. (2022) OnLine-First (https://doi.org/10.2298/JSC220109013S)

P. W. Rose, B. Beran, C. Bi, W. F. Bluhm, D. Dimitropoulos, D. S. Goodsell, A. Prlic, M. Quesada, G. B. Quinn, J. D. Westbrook, J. Young, B. Yukich, C. Zardecki, H. M. Berman, P. E. Bourne, Nucleic Acids Res. 39 (2011) D392 (https://doi.org/10.1093/nar/gkq1021

J. M. Word, S. C. Lovell, J. S. Richardson, D. C. Richardson, J. Mol. Biol. 285 (1999) 1735 (https://doi.org/10.1006/jmbi.1998.2401)

Accelrys Software Inc., (2020) Discovery Studio Visualizer, Release 2020. Accelrys Software Inc., San Diego.

J. Hostaš, D. Jakubec, R. A. Laskowski, R. Gnanasekaran, J. Řezáč, J. Vondrášek, P. Hobza, J. Chem. Theory. Comput. 11 (2015) 4086 (http://dx.doi.org/10.1021/acs.jctc.5b00398)

Schrödinger Release 2018-1: Jaguar, Schrödinger, LLC, New York, NY, 2018

T. H. Dunning, J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1063/1.456153)

T. Clark, J. Chandrasekhar, G. n. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem. 4 (1983) 294 (https://doi.org/10.1002/jcc.540040303)

A. D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden, D. M. Philipp, D. Rinaldo, M. D. Halls, J. Zhang, R. A. Friesner, Int. J. Quantum Chem. 113 (2013) 2110 (https://doi.org/10.1002/qua.24481)

K. E. Riley, J. A. Platts, J. Řezáč, P. Hobza, J. G. Hill, J. Phys. Chem. A 116 (2012) 4159 (https://doi.org/10.1021/jp211997b)

G. J. Jones, A. Robertazzi, J. A. Platts, J. Phys. Chem. B. 117 (2013) 3315 (https://doi.org/10.1021/jp400345s)

S. Saebø, W. Tong, P. Pulay, J. Chem. Phys. 98 (1993) 2170 (https://doi.org/10.1063/1.464195)

A. Reyes, L. Fomina, L. Rumsh, S. Fomine, Int. J. Quantum Chem. 104 (2005) 335 (https://doi.org/10.1002/qua.20558)

R. M. Balabin, J. Chem. Phys. 132 (2010) 231101 (https://doi.org/10.1063/1.3442466)

P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 299 (https://doi.org/10.1063/1.448975)

D. Vijay, G. N. Sastry, Chem. Phys. Lett. 485 (2010) 235 (https://doi.org/10.1016/j.cplett.2009.12.012)

Z. Dosztányi, A. Fiser, I. Simon, J. Mol. Biol. 272 (1997) 597 (https://doi.org/10.1006/jmbi.1997.1242)

Z. Dosztányi, C. Magyar, G. Tusnady, I. Simon, Bioinformatics 19 (2003) 899 (https://doi.org/10.1093/bioinformatics/btg110)

H. Ashkenazy, E. Erez, E. Martz, T. Pupko, N. Ben-Tal, Nucleic Acids Res. 38 (2010) W529 (https://doi.org/10.1093/nar/gkq399)

B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J. Martin, K. Michoud, C. O'Donovan, I. Phan, S. Pilbout, M. Schneider, Nucleic Acids Res. 31 (2003) 365 (https://doi.org/10.1093/nar/gkg095)

S. Stojanović, Z. Petrović, M. Zlatović, J. Serb. Chem. Soc. 86 (2021) 781 (https://doi.org/10.2298/JSC210321042S)

A. S. Mahadevi, G. N. Sastry, Chem. Rev. 116 (2016) 2775 (https://doi.org/10.1021/cr500344e)

B. Ma, T. Elkayam, H. Wolfson, R. Nussinov, Proc. Natl. Acad. Sci. USA 100 (2003) 5772 (https://doi.org/10.1073/pnas.1030237100)

E. G. Hohenstein, C. D. Sherrill, J. Phys. Chem. A. 113 (2009) 878 (https://doi.org/10.1021/jp809062x)

P. Chakrabarti, R. Bhattacharyya, Prog. Biophys. Mol. Biol. 95 (2007) 83 (https://doi.org/10.1016/j.pbiomolbio.2007.03.016)

S. Marsili, R. Chelli, V. Schettino, P. Procacci, Phys. Chem. Chem. Phys. 10 (2008) 2673 (https://doi.org/10.1039/B718519G)

S. Ishikawa, T. Ebata, H. Ishikawa, T. Inoue, N. Mikami, J. Phys. Chem. 100 (1996) 10531 (https://doi.org/10.1021/jp960267d)

A. Banerjee, A. Saha, B. K. Saha, Crystal Growth & Design 19 (2019) 2245 (https://doi.org/10.1021/acs.cgd.8b01857)

M. Landau, I. Mayrose, Y. Rosenberg, F. Glaser, E. Martz, T. Pupko, N. Ben-Tal, Nucleic Acids Research. 33 (2005) W299-W302 (https://doi.org/10.1093/nar/gki370).