Synthesis and structural characterization of Cd(II) complexes with 2-acetylpyridine-aminoguanidine – a novel coordination mode Scientific paper

Main Article Content

Mirjana Radanović
https://orcid.org/0000-0001-6675-9763
Slađana Novaković
https://orcid.org/0000-0002-8737-5870
Marko Rodić
https://orcid.org/0000-0002-4471-8001
Ljiljana Vojinović-Ješić
https://orcid.org/0000-0003-3551-6034
Christoph Janiak
https://orcid.org/0000-0002-6288-9605
Vukadin Leovac
https://orcid.org/0000-0003-3551-6034

Abstract

The structures of the first two complexes with bidentate coordination of aminoguanidine Schiff base, i.e., 2-acetylpyridine-aminoguanidine (L), are re­port­ed. The complex of the formula [Cd2Cl6(HL)2] (1) was obtained in the reaction of warm aqueous solutions of chloride salts of Cd(II), Zn(II), and the ligand, while the reaction of cadmium bromide and the ligand in the presence of deprotonating agent as well as ammonium thiocyanate resulted in the formation of the complex in which Schiff base has both the role of the ligand and the counterion, viz. [HL][Cd(HL)(NCS)2XY]·H2O (2), where X = Cl/Br, and Y = Br/SCN. The com­plexes were characterized by IR spectroscopy, elemental analysis, con­ducto­metric measurements, and SC-XRD. The unusual bidentate coordination of the Schiff base lead to significant changes in the geometry of this molecule (from almost planar in free form and as a tridentate ligand to twisted as a bidentate ligand). Besides, in complex 1 relatively rare bridging coordination of Cl anions in octahedral Cd(II) is found, while the crystal structure of complex 2 exhibits sub­stitutional disorder, and contains four different anions: [Cd(HL)(NCS)2Br(SCN)] (ca. 61 %), [Cd(HL)(NCS)2Cl(SCN)] (ca. 35 %), [Cd(HL)(NCS)2Br2] (ca. 3 %), and [Cd(HL)(NCS)2ClBr] (ca. 1 %).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Radanović, S. Novaković, M. Rodić, L. Vojinović-Ješić, C. Janiak, and V. Leovac, “Synthesis and structural characterization of Cd(II) complexes with 2-acetylpyridine-aminoguanidine – a novel coordination mode: Scientific paper”, J. Serb. Chem. Soc., Sep. 2022.
Section
Inorganic Chemistry

Funding data

References

R. Hernández-Molina, A. Mederos, 1.19 – Acyclic and Macrocyclic Schiff Base Ligands, in Comprehensive Coordination Chemistry II, 2003, pp. 411–446 (https://doi.org/10.1016/B0-08-043748-6/01070-7)

K. C. Gupta, A. K. Sutar, Coord. Chem. Rev. 252 (2008) 1420–1450 (https://doi.org/10.1016/j.ccr.2007.09.005)

J. Zhang, L. Xu, W.-Y. Wong, Coord. Chem. Rev. (2017) (https://doi.org/10.1016/j.ccr.2017.08.007)

S. Saeednia, P. Iranmanesh, M. H. Ardakani, M. Mohammadi, Gh. Norouzi, Mat. Res. Bull. 78 (2016) 1–10 (https://doi.org/10.1016/j.materresbull.2016.02.010)

H.-B. Yang, K. Ghosh, Y. Zhao, B. H. Northrop, M. M. Lyndon, D. C. Muddiman, H. S. White, P. J. Stang, J. Am. Chem. Soc. 130 (2008) 839–841 (https://doi.org/10.1021/JA710349J)

P. A. Vigato, S. Tamburini, L. Bertolo, Coord. Chem. Rev. 251 (2007) 1311–1492 (https://doi.org/10.1016/J.CCR.2006.11.016)

S. Satapathi, S. Das, K. Bhar, R. K. Kumar, T. K. Maji, B. K. Ghosh, Polyhedron 30 (2011) 387–396 (https://doi.org/10.1016/j.poly.2010.11.006)

S. Das, K. Bhar, S. Chattopadhyay, P. Mitra, V. J. Smith, L. J. Barbour, B. K. Ghosh, Polyhedron 38 (2012) 26–35 (https://doi.org/10.1016/J.POLY.2012.02.013)

S. Manna, E. Zangrando, S. C. Manna, Polyhedron 177 (2020) 114296 (https://doi.org/10.1016/J.POLY.2019.114296)

C. L. Siewit, B. Gengler, E. Vegas, R. Puckett, M. C. Louie, Mol. Endocrinol. 24 (2010) 981–992 (https://doi.org/10.1210/ME.2009-0410)

P. Joseph, Toxicol. Appl. Pharm. 238 (2009) 272–279 (https://doi.org/10.1016/J.TAAP.2009.01.011)

M. Filipič, Mut. Res. 733 (2012) 69–77 (https://doi.org/10.1016/J.MRFMMM.2011.09.002)

K. Golovine, P. Makhov, R. G. Uzzo, A. Kutikov, D. J Kaplan, E. Fox, V. M. Kolenko, Mol. Cancer 9 (2010) (https://doi.org/10.1186/1476-4598-9-183)

C. Casano, M. Agnello, R. Sirchia, C. Luparello, Biometals 23 (2010) 83–92 (https://doi.org/10.1007/S10534-009-9268-6)

N. Zhang, Y. Fan, Z. Zhang, J. Zuo, P. Zhang, Q. Wang, S. Liu, C. Bi, Inorg. Chem. Commun. (2012) 68–72 (https://doi.org/10.1016/J.INOCHE.2012.05.022)

N. Zhang, Y. Fan, G. Huang, D. Buac, C. Bi, Y. Ma, X. Wang, Z. Zhang, X. Zhang, Q. P. Dou, Inorg. Chim. Acta 466 (2017) 478–485 (https://doi.org/10.1016/J.ICA.2017.07.006)

Lj. S. Vojinović-Ješić, M. M. Radanović, M. V. Rodić, V. Živković-Radovanović, L. S. Jovanović, V. M. Leovac, Polyhedron 117 (2016) 526–534 (https://doi.org/10.1016/j.poly.2016.06.032)

Bruker. APEX2, SAINT, and SADABS.Bruker AXS Inc., Madison, Wisconsin, USA 2009 (n.d.)

Rigaku Oxford Diffraction, CrysAlisPro Software system, Rigaku Corporation, Oxford, UK, Oxford, UK, 2018

G. M. Sheldrick, Acta Crystallogr. Sect. A 71 (2015) 3–8 (https://doi.org/10.1107/S2053273314026370)

G. M. Sheldrick, Acta Crystallogr. Sect. C 71 (2015) 3–8 (https://doi.org/10.1107/S2053229614024218)

M. M. Radanović, M. V. Rodić, Lj. S. Vojinović-Ješić, S. Armaković, S. J. Armaković, V. M. Leovac, Inorg. Chim. Acta 473 (2018) 160–168 (https://doi.org/10.1016/J.ICA.2017.12.038)

J.-Y. Miao, Acta Crystallogr. Sect. E 66 (2010) m868–m868 (https://doi.org/10.1107/S1600536810025225)

C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. Sect. B 72 (2016) 171–179 (https://doi.org/10.1107/S2052520616003954)

O. Yu. Vassilyeva, E. A. Buvaylo, V. N. Kokozay, S. L. Studzinsky, B. W. Skelton, G. S. Vasyliev, Acta Crystallogr. E78 (2022) 173-178 (https://doi.org/10.1107/S2056989022000317)

G. R. Andrade, J. Kunsminskas, L. Pizzuti, A. dos Anjos, S. D. Inglez, B. Tirloni, P. H. Suegama, Inorg. Chem. Commun. 61 (2015) 210-213 (https://doi.org/10.1016/j.inoche.2015.09.022)

Z. A. Starikova, A. I. Yanovsky, Yu. T. Struchkov, S. V. Zubkov, I. I. Seifullina, Russ. Chem. Bull. (1996) 2157-2162 (https://doi.org/10.1007/BF01430730)

B. W. Skelton, V. N. Kokozay, O. Yu. Vassilyeva, E. A. Buvaylo, CSD Commun., Database Identifier GOTFIH, Deposition Number 1959073 (2019) (https://doi.org/10.5517/ccdc.csd.cc23rkxc)

O. T. Ujam, S. M. Devoy, W. Henderson, B. K. Nicholson, T. S. A. Hor, Inorg. Chim. Acta 363 (2010) 3558.

(https://doi.org/10.1016/j.ica.2010.07.011)

M. M. Radanović, S. B. Novaković, Lj. S. Vojinović-Ješić, M. V. Rodić, V. M. Leovac, J. Serb. Chem. Soc. 83 (2018) 157–166 (https://doi.org/10.2298/JSC170922116R)

Q. Li, H.-T. Wang, L. Zhou, Acta Crystallogr. Sect. C 71 (2015) 93–96 (https://doi.org/10.1107/S2053229614028009)

S. Khanna, S. Verma, CrystEngComm 16 (2014) 6680–6687 (https://doi.org/10.1039/C4CE00611A)

Á. Garcı́a-Raso, J. J. Fiol, F. Bádenas, X. Solans, M. Font-Bardia, Polyhedron 18 (1999) 765–772 (https://doi.org/10.1016/S0277-5387(98)90351-5)

P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. A. Spackman, J. Appl. Crystallogr. 54 (2021) 1006. (https://dx.doi.org/10.1107/S1600576721002910).

Most read articles by the same author(s)