Environmental behavioral controls of polychlorinated biphenyls: prediction of the soil sorption coefficient (Koc) using multiple linear regression

Main Article Content

Amina Chaoui
https://orcid.org/0009-0005-1608-3538
Amel Bouakkadia
https://orcid.org/0009-0008-4021-1423
Noureddine Kertiou
https://orcid.org/0000-0001-6793-3815
Hamza Haddag
https://orcid.org/0000-0002-8515-8397

Abstract

The application of the quantitative structure property relationship (QSPR) approach helps to predict physicochemical properties of chemicals from their molecular structures.  They are based on the translating and encoding of input information on theoretical molecular descriptors running by genetic algorithm techniques (GAs). In this research, the focus is mainly on the controlling and understanding the environmental fate and transport mechanisms of polychlorobiphenyls (PCBs) in soils. To achieve this goal, multiple linear regression (MLR) models were handed-down on a series of 188 PCBs to predict their soil sorption coefficient (log Koc) which is critical to measuring their affinity.  All statistical parameters obtained have indicated that the QSPR-MLR model has a very high predictive ability with a higher coefficient of determination ( = 0.9984) and lower Root Mean Squared Errors (RMSE = 0.0610).  Moreover, the dominant molecular descriptors are mentioned that the sorption process of these compounds on the surface of soils have been influenced by the size of molecule, polarizability and density.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Chaoui, A. Bouakkadia, N. Kertiou, and H. Haddag, “Environmental behavioral controls of polychlorinated biphenyls: prediction of the soil sorption coefficient (Koc) using multiple linear regression”, J. Serb. Chem. Soc., May 2025.
Section
Theoretical Chemistry

References

S. Kherouf, N. Bouarra, A. Bouakkadia, D. Messadi, J. Ser. Chem. Soc. 84 (2019) 575 – 590 (https://doi.org/10.2298/JSC180820016K)

P. Gramatica, Int. J. Quant. Struct. Prop. Relat. 5 (2020) 63-77 (https://doi.org/10.4018/IJQSPR.20200701.oa1)

S. Yu, S. Gao, Y. Gan, Y. Zhang, X. Ruan, Y. Wang, L. Yang, J. Shi, SAR QSAR Env. Res. 27 (2016) 2-13 (http://dx.doi.org/10.1080/1062936X.2016.1158734)

W. J. Doucette, Environ. Toxicol. Chem. 22 (2003) 1771–1788 (http://doi.org/10.1897/01-362)

P. Gramatica, E. Giani, E. Papa, J. Mol. Graph. Modell. 25 (2007) 755–766 (https://doi.org/10.1016/j.jmgm.2006.06.005)

R. S. Kookana, R. Ahmad, A. Farenhorst, Sorption of Pesticides and its Dependence on Soil Properties: Chemometrics Approach for Estimating Sorption in Non-First Order Degradation and Time-Dependent Sorption of Organic Chemicals in Soil, Eds.: W. Chen, A. Sabljic, S. A. Cryer, R. S. Kookana, ACS Symposium Series vol. 1174, American Chemical Society 2014, pp. 222- 236 (http://doi.org/10.1021/bk-2014-1174.ch012)

J. Yuan, S. Yu, T. Zhang, X. Yuan, Y. Cao, X. Yu, X. Yang, W. Yao, Ecotox. Env. Safet. 128 (2016) 171–180. (http://dx.doi.org/10.1016/j.ecoenv.2016.02.022)

Y. Wang, J. Chen, X. Yang, F. Lyakurwa, X. Li, X. Qiao, Chemosphere 119 (2015) 438-444 (http://dx.doi.org/10.1016/j.chemosphere.2014.07.007)

M. H. Fatemi, Z. G. Chahi, SAR QSAR Env. Res. 23 (2012) 155-168 (http://dx.doi.org/10.1080/1062936X.2011.645876)

P. Singh, S. Pandit, R. Parthasarathi, Predictive modeling approaches for the risk assessment of persistent organic pollutants (POPs): from QSAR to machine learning–based models in QSAR in Safety Evaluation and Risk Assessment, Ed.: H. Hong Elsevier Science, 2023, pp. 77-87 (http://doi.org/10.1016/B978-0-443-15339-6.00026-6)

S. Mao, S. Liu, Y. Zhou, Q. An, X. Zhou, Z. Mao, Y. Wu, W. Liu, Env. Poll. 271 (2021) 116171 (https://doi.org/10.1016/j.envpol.2020.116171)

Y. Dumanoglu, E. O. Gaga, E. Gungormus, S. C. Sofuoglu, M. Odabasi, Sci. Tot. Env. J. 580 (2017) 920-935 (http://doi.org/10.1016/j.scitotenv.2016.12.040)

S. Kakareka, T. Kukharchyk, Sources of Poychlorinated Biphenyls Emissions, EMEP/CORINAIR Guidebook Ed. K. Breivik (2005) (https://www.eea.europa.eu/publications/EMEPCORINAIR5/Sources_of_PCB_emissions.pdf)

K. B. Moysich, R. J. Menzes, J. A. Baker, K. L. Falkner, Rev. Env. Health. 17 (2002) 263–278 (http://doi.org/10.1515/REVEH.2002.17.4.263)

D. O. Carpenter, Rev. Env. Health 21 (2006) 1-24 (https://doi.org/10.1515/REVEH.2006.21.1.1)

L. M. Frazier, J. Agromed. 12 (2007) 27-37 (https://doi.org/10.1300/J096v12n01_04)

N. Othman, Z. Ismail, M. I. Selamat, S. H. S. Abdul Kadir, N. A. Shibraumalisi, Int. J. Environ. Res. Public Health. 19 (2022) 13923 (https://doi.org/10.3390/ijerph192113923)

K. Jagiello, A. Sosnowska, S. Walker, M. Haranczyk, A. Gajewicz, T. Kawai, N. Suzuki, J. Leszczynski, T. Puzyn, Struct. Chem. 25 (2014) 997-1004 (https://doi.org/10.1007/s11224-014-0419-1)

ChemDraw, CambridgeSoft Corporation, 875 Massachusetts Ave., Cambridge, MA 02139, USA, Visit http://camsoft.com/ for further information.

Hyperchem TM Release 6,03 for windows, Molecular Modeling System (2000).

R. Todeschini, V. Consonni, M. Pavan, DRAGON Software for the Calculation of Molecular Descriptors, Release 5.3 for windows, Milano (2006).

P. Gramatica, N. Chirico, E. Papa, S. Cassani, S. Kovarich, J. Comp. Chem. 34 (2013) 2121-2132 (https://doi.org/10.1002/jcc.23361)

P. Gramatica, S. Cassani, N. Chirico, J. Comp. Chem. 35 (2014) 1036–1044 (https://doi.org/10.1002/jcc.23576)

L. Gu, T. Zhu, M. Chen, J. Env. Chem. Eng. 9 (2021) 105615 (https://doi.org/10.1016/j.jece.2021.105615)

X. Zhao, Y. Zhao, Z. Ren, Y. Li, Comp. Biol. Chem. 79 (2019) 177-184 (http://doi.org/10.1016/j.compbiolchem.2019.02.008)

H. Yu, D. Wondrousch, F. Li, J. Chen, H. Lin, L. Ji, Chem. Res. Toxic. 28 (2015) 1541 (http://doi.org/10.1021/acs.chemrestox.5b00127)

H. Liu, M. Wei, X. Yang, C. Yin, X. He, Sci. Total Environ. 574 (2017) 1371-1378 (https://doi.org/10.1016/j.scitotenv.2016.08.051)

N. Chirico, P. Gramatica, J. Chem. Inf. Model. 52 (2012) 2044-2058 (https://doi.org/10.1021/ci300084j)

E. Carnescchi, A. A. Toropov, A. P. Toropova, N. Kramer, C. Svendsen, J. L. Dorne, E. Benfenati, Sci. Total Environ. 704 (2020) 135302 (http://doi.org/10.1016/j.scitotenv.2019.135302)

T. Zhu, H. Yan, R. P. Singh, Y. Wang, H. Cheng, Env. Sci. Poll. Res. J. 27 (2020) 17550 (http://doi.org/10.1007/s11356-019-06389-z)

N. Bouarra, S. Kherouf, N. Nadji, L. Nouri, A. Boudjemaa, S. Djerad, K. Bachari, Chem. Prod. Process Model. 19 (2024) 251-262 (http://doi.org/10.1515/cppm-2023-0024).