Synthesis, X-ray structure and DFT calculation of magnetic properties of binuclear Ni(II) complex with tridentate hydrazone-based ligand

Tanja Keškić, Dušanka Radanović, Andrej Pevec, Iztok Turel, Maja Gruden, Katarina Andjelkovic, Dragana Mitić, Matija Zlatar, Božidar Čobeljić

Abstract


Binuclear double end-on azido bridged Ni(II) complex (1) with composition [Ni2L2(μ-1,1-N3)2(N3)2]×6H2O,  (L = (E)-N,N,N-trimethyl-2-oxo-2-(2-
-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-amin) was synthesized and cha­racterized by single-crystal X-ray diffraction method. Ni(II) ions are hexaco­or­dinated with the tridentate heteroaromatic hydrazone-based ligand and three azido ligands (one terminal and two are end-on bridges). DFT calculations revealed that coupling between two Ni(II) centers is ferromagnetic in agreement with binuclear Ni(II) complexes with similar structures.


Keywords


Schiff base; azido-bridged; double end-on

Full Text:

PDF (1,832 kB)

References


J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. Corteś, L. Lezama, T. Rojo, Coord. Chem. Rev. 193–195 (1999) 1027–1068 (https://doi.org/10.1016/S0010-8545(99)00051-X)

E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Am. Chem. Soc. 120 (1998) 11122–11129 (https://pubs.acs.org/doi/abs/10.1021/ja981661n)

A. Escuer, G. Aromí, Eur. J. Inorg. Chem. (2006) 4721–4736 (https://doi.org/10.1002/ejic.200600552)

F.-C. Liu, Y.-F. Zeng, J.-R. Li, X.-H. Bu, H.-J. Zhang, J. Ribas, Inorg. Chem. 44 (2005) 7298–7300 (https://pubs.acs.org/doi/abs/10.1021/ic051030b)

P. Chaudhuri, R. Wagner, S. Khanra, T. Weyhermüller, Dalton Trans. (2006) 4962–4968 (https://doi.org/10.1039/B610308A)

J. Ribas, M. Monfort, C. Diaz, C. Bastos, X. Solans, Inorg. Chem. 33 (1994) 484–489 (https://doi.org/10.1021/ic00081a015)

M. Č. Romanović, B. R. Čobeljić, A. Pevec, I. Turel, V. Spasojević, A. A. Tsaturyan, I. N. Shcherbakov, K. K. Anđelković, M. Milenković, D. Radanović, M. R. Milenković, Polyhedron 128 (2017) 30–37 (https://doi.org/10.1016/j.poly.2017.02.039)

S. Sarkar, A. Mondal, M.S. El Fallah, J. Ribas, D. Chopra, H. Stoeckli-Evans, K.K. Rajak, Polyhedron 25 (2006) 25–30 (https://doi.org/10.1016/j.poly.2005.06.059)

H.-D. Bian, W. Gu, Q. Yu, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, P. Cheng, Polyhedron 24 (2005) 2002– 2008 (https://doi.org/10.1016/j.poly.2005.06.011)

S. Liang, Z. Liu, N. Liu, C. Liu, X. Di, J. Zhang, J. Coord. Chem. 63 (2010) 3441–3452 (https://doi.org/10.1080/00958972.2010.512386)

S.S. Massoud, F.R. Louka, Y.K. Obaid, R. Vicente, J. Ribas, R.C. Fischer, F.A. Mautner, Dalton Trans. 42 (2013) 3968–3978 (https://pubs.rsc.org/en/content/articlelanding/2013/dt/c2dt32540c)

R. Cortés, J.I. Ruiz de Larramendi, L. Lezama, T. Rojo, K. Urtiaga, M.I. Arriortua, J. Chem. Soc. Dalton Trans. (1992) 2723–2728 (https://doi.org/10.1039/DT9920002723)

M.G. Barandika, R. Cortés, L. Lezama, M.K. Urtiaga, M.I. Arriortua, T. Rojo, J. Chem. Soc., Dalton Trans. (1999) 2971−2976 (https://doi.org/10.1039/A903558C)

A. Escuer, R. Vicente, J. Ribas, X. Solans, Inorg. Chem. 34 (1995) 1793–1798 (https://doi.org/10.1021/ic00111a029)

A. Solanki, M. Monfort, S.B. Kumar, J. Mol. Struct. 1050 (2013) 197–203 (https://doi.org/10.1016/j.molstruc.2013.07.036)

S. Nandi, D. Bannerjee, J.-S. Wu, T.-H. Lu, A.M.Z. Slawin, J.D. Woollins, J. Ribas, C. Sinha, Eur. J. Inorg. Chem. (2009) 3972–3981 (https://doi.org/10.1002/ejic.200900423)

A. R. Jeong, J. W. Shin, J. H. Jeong, K. H. Bok, C. Kim, D. Jeong, J. Cho, S. Hayami, K. S. Min, Chem. Eur. J. 23 (2017) 3023–3033 (https://doi.org/10.1002/chem.201604498)

A. R. Jeong, J. Choi, Y. Komatsumaru, S. Hayami, K. S. Min, Inorg. Chem. Commun. 86 (2017) 66–69 (https://doi.org/10.1016/j.inoche.2017.09.023)

S. Deoghoria, S. Sain, M. Soler, W.T. Wong, G. Christou, S.K. Bera, S.K. Chandra, Polyhedron 22 (2003) 257–262 (https://doi.org/10.1016/S0277-5387(02)01336-0)

S. Sain, S. Bid, A. Usman, H.-K. Fun, G. Aromí, X. Solans, S.K. Chandra, Inorg. Chim. Acta 358 (2005) 3362–3368 (https://doi.org/10.1016/j.ica.2005.05.011)

A. N. Georgopoulou, C. R. Raptopoulou, V. Psycharis, R. Ballesteros, B. Abarca, A. K. Boudlais, Inorg. Chem. 48 (2009) 3167–3176 (https://doi.org/10.1021/ic900115c)

H.-Z. Kou, S. Hishiya, O. Sato, Inorg. Chim. Acta 361 (2008) 2396–2406 (https://doi.org/10.1016/j.ica.2007.12.018)

Oxford Diffraction, CrysAlis PRO Software system, Oxford Diffraction Ltd., Yarnton (England) 2009.

A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 26 (1993) 343-350 (https://doi.org/10.1107/S0021889892010331)

G. M. Sheldrick, Acta. Crystallogr. A64 (2008) 112–122 (https://doi.org/10.1107/S0108767307043930)

F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 73–78. (https://doi.org/10.1002/wcms.81)

G. Jonkers, C. A. de Lange, L. Noodleman, E. J. Baerends, Mol. Phys. 46 (1982) 609–620 (https://doi.org/10.1080/00268978200101431)

L. Noodleman, J. Chem. Phys. 74 (1981) 5737–5743 (https://doi.org/10.1063/1.440939)

L. Noodleman, E. R. Davidson, Chem. Phys. 109 (1986) 131–143 (https://doi.org/10.1016/0301-0104(86)80192-6)

L. Noodleman, J. G. Norman, J. H. Osborne, A. Aizman, D. A. Case, J. Am. Chem. Soc. 107 (1985) 3418–3426 (https://doi.org/10.1021/ja00298a004)

F. Neese, Coord. Chem. Rev. 253 (2009) 526–563 (https://doi.org/10.1016/j.ccr.2008.05.014)

T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka, K. Yamaguchi, Chem. Phys. Lett. 319 (2000) 223–230 (https://doi.org/10.1016/S0009-2614(00)00166-4)

C. van Wüllen, J. Chem. Phys. 109 (1998) 392–399 (https://doi.org/10.1063/1.476576)

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297–3305 (https://doi.org/10.1039/b508541a)

D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 4 (2008) 908–919 (https://doi.org/10.1021/ct800047t)

Y. Zhao, D. G. Truhlar, J. Chem. Phys. 125 (2006) 194101 (https://doi.org/10.1063/1.2370993)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215–241 (https://doi.org/10.1007/s00214-007-0310-x)

L. Goerigk, S. Grimme, J. Chem. Theory Comput. 7 (2010) 291–309 (https://doi.org/10.1021/ct100466k)

S. Grimme, J. Chem. Phys. 124 (2006) 034108 (https://doi.org/10.1063/1.2148954)

F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356 (2009) 98–109 (https://doi.org/10.1016/j.chemphys.2008.10.036)

F. Neese, J. Chem. Phys. 115 (2001) 11080–11096 (https://doi.org/10.1063/1.1419058)

D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 5 (2009) 2229–2238 (https://doi.org/10.1021/ct900090f)

F. Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057–1065 (https://doi.org/10.1039/b515623h)

A. Hellweg, C. Hättig, S. Höfener, W. Klopper, Theor. Chem. Acc. 117 (2007) 587–597 (https://doi.org/10.1007/s00214-007-0250-5)

A. D. Becke, Phys. Rev. A 38 (1988) 3098–3100 (https://doi.org/10.1103/PhysRevA.38.3098)

J. P. Perdew, Phys. Rev. B 33 (1986) 8822–8824 (https://doi.org/10.1103/PhysRevB.33.8822)

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104 (https://doi.org/10.1063/1.3382344)

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456–1465 (https://doi.org/10.1002/jcc.21759)

F. Neese, J. Phys. Chem. Solids 65 (2004) 781–785 (https://doi.org/10.1016/J.JPCS.2003.11.015)

F. Neese, E. I. Solomon, Inorg. Chem. 37 (1998) 6568–6582 (https://doi.org/10.1021/ic980948i)

F. Neese, J. Chem. Phys. 127 (2007) 164112 (https://doi.org/10.1063/1.2772857)

S. Sinnecker, F. Neese, J. Phys. Chem. A 110 (2006) 12267–12275 (https://doi.org/10.1021/jp0643303)

M. Atanasov, C. A. A. Daul, C. Rauzy, Chem. Phys. Lett. 367 (2003) 737–746 (https://doi.org/10.1016/S0009-2614(02)01762-1)

M. Atanasov, C. A. Daul, C. Rauzy, A DFT based ligand field theory, in D. M. P. Mingos, T. Schönherr (Eds.), Opt. Spectra Chem. Bond. Inorg. Compd., Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 97–125 (https://doi.org/10.1007/b11308)

D. Darmanović, I. N. Shcherbakov, C. Duboc, V. Spasojević, D. Hanžel, K. Anđelković, D. Radanović, I. Turel, M. Milenković, M. Gruden, B. Čobeljić, M. Zlatar, J. Phys. Chem. C (2019) (https://doi.org/10.1021/acs.jpcc.9b08066)

G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 22 (2001) 931–967 (https://doi.org/10.1002/jcc.1056)

C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta) 99 (1998) 391–403 (https://doi.org/10.1007/s002140050353)

ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, https://www.scm.com

D. A. Pantazis, V. Krewald, M. Orio, F. Neese, Dalt. Trans. 39 (2010) 4959–4967 (https://doi.org/10.1039/c001286f)

F. El-Khatib, B. Cahier, F. Shao, M. López-Jordà, R. Guillot, E. Rivière, H. Hafez, Z. Saad, J. J. Girerd, N. Guihéry, T. Mallah, Inorg. Chem. 56 (2017) 4601–4608 (https://doi.org/10.1021/acs.inorgchem.7b00205)

I. Nemec, R. Herchel, M. Machata, Z. Trávníček, New J. Chem. 41 (2017) 11258–11267 (https://doi.org/10.1039/c7nj02281f)

M. Zlatar, M. Gruden, O. Vassilyeva, E. Buvaylo, A. Ponomaryov, S. Zvyagin, J. Wosnitza, J. Krzystek, P. García-Fernández, C. Duboc, Inorg. Chem. 55 (2016) 1192–1201 (https://doi.org/10.1021/acs.inorgchem.5b02368)

M. Gruden-Pavlović, M. Perić, M. Zlatar, P. García-Fernández, Chem. Sci. 5 (2014) 1453–1462 (https://doi.org/10.1039/C3SC52984C)

L. Wang, M. Zlatar, F. Vlahović, S. Demeshko, C. Philouze, F. Molton, M. Gennari, F. Meyer, C. Duboc, M. Gruden, Chem. - A Eur. J. 24 (2018) 11973–11982 (https://doi.org/10.1002/chem.201705989)

S. Gómez-Coca, D. Aravena, R. Morales, E. Ruiz, Coord. Chem. Rev. 289–290 (2015) 379–392 (https://doi.org/10.1016/J.CCR.2015.01.021)

A. K. Bar, C. Pichon, J.-P. Sutter, Coord. Chem. Rev. 308 (2016) 346–380 (https://doi.org/10.1016/J.CCR.2015.06.013)

M. Pinsky, D. Avnir, 37 (1998) 5575–5582 (https://doi.org/10.1021/IC9804925)

S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, Coord. Chem. Rev. 249 (2005) 1693–1708 (https://doi.org/10.1016/J.CCR.2005.03.031)




DOI: https://doi.org/10.2298/JSC200625038K

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)