The application of SHS-GC-FID method for volatile saturated aldehydes and HPLC-DAD method for malondialdehyde determination in shelf-life prediction of gluten-free cookies

Main Article Content

Marijana Sakač
Lato Pezo
Pavle Jovanov
Nataša Nedeljković
Anamarija Mandić
Mladenka Pestorić
Aleksandra Mišan

Abstract

The aim of this study was to compare the sensitivity of two analytical methods for the prediction of the shelf-life of unpacked and packed gluten-free rice–buckwheat cookies kept at ambient (23±1 °C) and elevated (40±1 °C) temperature during storage, namely the static headspace gas chromatographic method with flame ionisation detection (SHS-GC-FID) for volatile saturated aldehydes (propanal (C3), pentanal (C5), hexanal (C6), heptanal (C7) and octa­nal (C8)) and the HPLC method for malondialdehyde (MDA) determination. Both methods resulted in obtaining the same end-points of cookie shelf-life, i.e., 3 and 5 months for unpacked and packed cookies kept at elevated tempe­ra­ture, respectively, and 11 and 14 months for unpacked and packed cookies kept at ambient temperature, respectively. Two computational approaches, i.e., the second order polynomial (SOP) and artificial neural network (ANN) models, were used accordingly. The calculations of the contents of aldehydes and MDA could be predicted with an overall coefficient of determination of 0.722 using the ANN model compared to 0.312–0.773 for SOP models. According to sen­si­tivity analysis, it might be suggested that the relevant parameter for the predict­ion of the end-point of cookie shelf-life is the MDA rather than the C3, C5, C6, C7 and C8 content.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Sakač, “The application of SHS-GC-FID method for volatile saturated aldehydes and HPLC-DAD method for malondialdehyde determination in shelf-life prediction of gluten-free cookies”, J. Serb. Chem. Soc., vol. 82, no. 12, pp. 1343–1355, Dec. 2017.
Section
Biochemistry & Biotechnology

References

A. Chauhan, D. C. Saxena, S. Singh, LWT-Food. Sci. Technol. 63 (2015) 939

M. Sakač, M. Pestorić, A. Mišan, N. Nedeljković, D. Jambrec, P. Jovanov, V. Banjac, A. Torbica, M. Hadnađev, A. Mandić, Food Technol. Biotech. 53 (2015) 38

M. Kaur, K. S. Sandhu, A. P. Arora, A. Sharma, LWT-Food. Sci. Technol. 62 (2015) 628

F. Caponio, C. Summo, M. L. Clodoveo, A. Pasqualone, Eur. Food Res. Technol. 227 (2008) 135

F. Caponio, C. Summo, D. Delcuratola, A. Pasqualone, J. Sci. Food Agr. 86 (2006) 135

M. Bialek, J. Rutkowska, A. Bialek, A. Adamska, Pol. J. Food Nutri. Sci. 66 (2016) 77

M. Laguerre, J. Lecomte, P. Villeneuve, Prog. Lipid Res. 46 (2007) 244

V. M. Paradiso, C. Summo, A. Pasqualone, F. Caponio, Food Chem. 113 (2009) 543

S. Pastorelli, L. Torri, A. Rodriguez, S. Valzacchi, S. Limbo, C. Simoneau, Food Addit. Contam. 24 (2007) 1219

A. Pasqualone, A. M. Bianco, V. M. Paradiso, C. Summo, G. Gambacorta, F. Caponio, A. Blanco, Food Chem. 180 (2015) 64

A. Fullana, A. A. Carbonell-Barrachina, S. Sidhu, J. Sci. Food Agr. 84 (2004) 2015

E. N. Frankel, Methods to Determine Extent of Lipid Oxidation, in Lipid Oxidation, 2nd edition, E. N. Frankel, Ed., The Oily Press, Bridgewater, UK, 2005, p. 99.

A. Mandić, I. Sedej, M. Sakač, A. Mišan, Food Anal. Method. 6 (2013) 61

M. Sakač, M. Pestorić, A. Mandić, A. Mišan, N. Nedeljković, D. Jambrec, P. Jovanov, V. Lazić, L. Pezo, I. Sedej, J. Cereal Sci. 69 (2016) 336

F. Shahidi, Y. Zhong, Lipid Oxidation: Measurement Methods, in Bailey's Industrial Oil and Fat Products, 6th edition, F. Shahidi, Ed., John Wiley & Sons, Hoboken, NJ, USA, 2005, p. 357

Z. Wei, X. Li, D. Thushara, Y. Liu, J. Food Eng. 107 (2011) 379

J. Tsaknis, S. Lalas, M. Hole, G. Smith, V. Tychopoulos, Analyst 123 (1998) 325

F. Karatas, M. Karatepe, A. Baysar, Anal. Biochem. 311 (2002) 76

X. Hu, Q. Weng, Remote Sens. Environ. 113 (2009) 2089

B. J. Taylor, B. J. Taylor, Methods and Procedures for the Verification and Validation of Artificial Neural Networks, Springer Science+Business Media, New York, USA, 2006

L. L. Pezo, R. R. Čolović, D. V. Palić, A. P. Jovanović, Food Feed Res. 42 (2015) 73

STATISTICA, v. 10. StatSoft, Inc, Tulsa, OK, USA (2010) http://www.statsoft.com.

J. Fernández, J. A. Perez-Alvarez, J. A. Fernández-Lopez, Food Chem. 59 (1997) 345

R. Dittrich, F. El-Massry, F. Rinaldi, C. C. Peich, M. W. Beckman, M. Pischetsrieder, J. Agr. Food Chem. 51 (2003) 3900

A. Papastergiadis, A. Fatouh, L. Jacxsens, C. Lachat, K. Shrestha, J. Daelman, P. Kolsterena, H. Van Langenhove, B. De Meulenaer, Food Chem. Toxicol. 73 (2014) 51

E. P. Botosoa, C. Chèné, R. Karoui, Food Chem. 141 (2013) 1130

H. Estebauer, R. J. Schaur, H. Zollner, Free Radical Bio. Med. 11 (1991) 81

A. Papastergiadis, E. Mubiru, H. Van Langenhove, B. De Meulenaer, J. Agr. Food Chem. 60 (2012) 9589

M. D. Guillén, E. Goicoechea, Crit. Rev. Food Sci. 48 (2008) 119

P. J. Ke, E. Cervants, C. Robles-Martinez, J. Agr. Food Chem. 35 (1984) 1248

P. B. Chattopadhyaya, R. Rangarajana, Agr. Water Manage. 133 (2014) 81

Most read articles by the same author(s)